Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Artificial Intelligence and Robotics

Technological University Dublin

Deep learning

Articles 1 - 9 of 9

Full-Text Articles in Physical Sciences and Mathematics

Wifi-Based Human Activity Recognition Using Attention-Based Bilstm, Amany Elkelany, Robert J. Ross, Susan Mckeever Feb 2023

Wifi-Based Human Activity Recognition Using Attention-Based Bilstm, Amany Elkelany, Robert J. Ross, Susan Mckeever

Conference papers

Recently, significant efforts have been made to explore human activity recognition (HAR) techniques that use information gathered by existing indoor wireless infrastructures through WiFi signals without demanding the monitored subject to carry a dedicated device. The key intuition is that different activities introduce different multi-paths in WiFi signals and generate different patterns in the time series of channel state information (CSI). In this paper, we propose and evaluate a full pipeline for a CSI-based human activity recognition framework for 12 activities in three different spatial environments using two deep learning models: ABiLSTM and CNN-ABiLSTM. Evaluation experiments have demonstrated that the …


An Investigation Of The Reconstruction Capacity Of Stacked Convolutional Autoencoders For Log-Mel-Spectrograms, Anastasia Natsiou, Luca Longo, Seán O'Leary Oct 2022

An Investigation Of The Reconstruction Capacity Of Stacked Convolutional Autoencoders For Log-Mel-Spectrograms, Anastasia Natsiou, Luca Longo, Seán O'Leary

Conference Papers

In audio processing applications, the generation of expressive sounds based on high-level representations demonstrates a high demand. These representations can be used to manipulate the timbre and influence the synthesis of creative instrumental notes. Modern algorithms, such as neural networks, have inspired the development of expressive synthesizers based on musical instrument timbre compression. Unsupervised deep learning methods can achieve audio compression by training the network to learn a mapping from waveforms or spectrograms to low-dimensional representations. This study investigates the use of stacked convolutional autoencoders for the compression of time-frequency audio representations for a variety of instruments for a single …


Explaining Deep Learning Models For Tabular Data Using Layer-Wise Relevance Propagation, Ihsan Ullah, Andre Rios, Vaibhov Gala, Susan Mckeever Dec 2021

Explaining Deep Learning Models For Tabular Data Using Layer-Wise Relevance Propagation, Ihsan Ullah, Andre Rios, Vaibhov Gala, Susan Mckeever

Articles

Trust and credibility in machine learning models are bolstered by the ability of a model to explain its decisions. While explainability of deep learning models is a well-known challenge, a further challenge is clarity of the explanation itself for relevant stakeholders of the model. Layer-wise Relevance Propagation (LRP), an established explainability technique developed for deep models in computer vision, provides intuitive human-readable heat maps of input images. We present the novel application of LRP with tabular datasets containing mixed data (categorical and numerical) using a deep neural network (1D-CNN), for Credit Card Fraud detection and Telecom Customer Churn prediction use …


Flying Free: A Research Overview Of Deep Learning In Drone Navigation Autonomy, Thomas Lee, Susan Mckeever, Jane Courtney Jun 2021

Flying Free: A Research Overview Of Deep Learning In Drone Navigation Autonomy, Thomas Lee, Susan Mckeever, Jane Courtney

Articles

With the rise of Deep Learning approaches in computer vision applications, significant strides have been made towards vehicular autonomy. Research activity in autonomous drone navigation has increased rapidly in the past five years, and drones are moving fast towards the ultimate goal of near-complete autonomy. However, while much work in the area focuses on specific tasks in drone navigation, the contribution to the overall goal of autonomy is often not assessed, and a comprehensive overview is needed. In this work, a taxonomy of drone navigation autonomy is established by mapping the definitions of vehicular autonomy levels, as defined by the …


Wider Vision: Enriching Convolutional Neural Networks Via Alignment To External Knowledge Bases, Xuehao Liu, Sarah Jane Delany, Susan Mckeever Mar 2021

Wider Vision: Enriching Convolutional Neural Networks Via Alignment To External Knowledge Bases, Xuehao Liu, Sarah Jane Delany, Susan Mckeever

Conference papers

Deep learning models suffer from opaqueness. For Convolutional Neural Networks (CNNs), current research strategies for explaining models focus on the target classes within the associated training dataset. As a result, the understanding of hidden feature map activations is limited by the discriminative knowledge gleaned during training. The aim of our work is to explain and expand CNNs models via the mirroring or alignment of the network to an external knowledge base. This will allow us to give a semantic context or label for each visual feature. Using the resultant aligned embedding space, we can match CNN feature activations to nodes …


Language-Driven Region Pointer Advancement For Controllable Image Captioning, Annika Lindh, Robert J. Ross, John D. Kelleher Dec 2020

Language-Driven Region Pointer Advancement For Controllable Image Captioning, Annika Lindh, Robert J. Ross, John D. Kelleher

Conference papers

Controllable Image Captioning is a recent sub-field in the multi-modal task of Image Captioning wherein constraints are placed on which regions in an image should be described in the generated natural language caption. This puts a stronger focus on producing more detailed descriptions, and opens the door for more end-user control over results. A vital component of the Controllable Image Captioning architecture is the mechanism that decides the timing of attending to each region through the advancement of a region pointer. In this paper, we propose a novel method for predicting the timing of region pointer advancement by treating the …


A U-Net Deep Learning Framework For High Performance Vessel Segmentation In Paitents With Cerebrovascular Disease, Michelle Livne, Jana Rieger, Orhun Utku Aydin, Abdel Aziz Taha, Ela Maria Akay, Tabea Kossen, Jan Sobesky, John D. Kelleher, Kristian Hildebrand, Dietmar Frey, Vince I. Madai Feb 2019

A U-Net Deep Learning Framework For High Performance Vessel Segmentation In Paitents With Cerebrovascular Disease, Michelle Livne, Jana Rieger, Orhun Utku Aydin, Abdel Aziz Taha, Ela Maria Akay, Tabea Kossen, Jan Sobesky, John D. Kelleher, Kristian Hildebrand, Dietmar Frey, Vince I. Madai

Articles

Brain vessel status is a promising biomarker for better prevention and treatment in cerebrovascular disease. However, classic rule-based vessel segmentation algorithms need to be hand-crafted and are insufficiently validated. A specialized deep learning method—the U-net—is a promising alternative. Using labeled data from 66 patients with cerebrovascular disease, the U-net framework was optimized and evaluated with three metrics: Dice coefficient, 95% Hausdorff distance (95HD) and average Hausdorff distance (AVD). The model performance was compared with the traditional segmentation method of graph-cuts. Training and reconstruction was performed using 2D patches. A full and a reduced architecture with less parameters were trained. We …


Tackling The Interleaving Problem In Activity Discovery, Eoin Rogers, Robert J. Ross, John D. Kelleher Jun 2017

Tackling The Interleaving Problem In Activity Discovery, Eoin Rogers, Robert J. Ross, John D. Kelleher

Conference papers

Activity discovery (AD) is the unsupervised process of discovering activities in data produced from streaming sensor networks that are recording the actions of human subjects. One major challenge for AD systems is interleaving, the tendency for people to carry out multiple activities at a time a parallel. Following on from our previous work, we continue to investigate AD in interleaved datasets, with a view towards progressing the state-of-the-art for AD.


Towards A Deep Learning-Based Activity Discovery System, Eoin Rogers, John D. Kelleher, Robert J. Ross Sep 2016

Towards A Deep Learning-Based Activity Discovery System, Eoin Rogers, John D. Kelleher, Robert J. Ross

Conference papers

Activity discovery is a challenging machine learning problem where we seek to uncover new or altered behavioural patterns in sensor data. In this paper we motivate and introduce a novel approach to activity discovery based on modern deep learning techniques. We hypothesise that our proposed approach can deal with interleaved datasets in a more intelligent manner than most existing AD methods. We also build upon prior work building hierarchies of activities that capture the inherent ag- gregate nature of complex activities and show how this could plausibly be adapted to work with the deep learning technique we present. Finally, we …