Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Law Library Blog (November 2020): Legal Beagle's Blog Archive, Roger Williams University School Of Law Nov 2020

Law Library Blog (November 2020): Legal Beagle's Blog Archive, Roger Williams University School Of Law

Law Library Newsletters/Blog

No abstract provided.


Topology-Guided Roadmap Construction With Dynamic Region Sampling, Read Sandström, Diane Uwacu, Jory Denny, Nancy M. Amato Oct 2020

Topology-Guided Roadmap Construction With Dynamic Region Sampling, Read Sandström, Diane Uwacu, Jory Denny, Nancy M. Amato

Department of Math & Statistics Faculty Publications

Many types of planning problems require discovery of multiple pathways through the environment, such as multi-robot coordination or protein ligand binding. The Probabilistic Roadmap (PRM) algorithm is a powerful tool for this case, but often cannot efficiently connect the roadmap in the presence of narrow passages. In this letter, we present a guidance mechanism that encourages the rapid construction of well-connected roadmaps with PRM methods. We leverage a topological skeleton of the workspace to track the algorithm's progress in both covering and connecting distinct neighborhoods, and employ this information to focus computation on the uncovered and unconnected regions. We demonstrate …


Asymptotically-Optimal Topological Nearest-Neighbor Filtering, Read Sandström, Jory Denny, Nancy M. Amato Oct 2020

Asymptotically-Optimal Topological Nearest-Neighbor Filtering, Read Sandström, Jory Denny, Nancy M. Amato

Department of Math & Statistics Faculty Publications

Nearest-neighbor finding is a major bottleneck for sampling-based motion planning algorithms. The cost of finding nearest neighbors grows with the size of the roadmap, leading to a significant computational bottleneck for problems which require many configurations to find a solution. In this work, we develop a method of mapping configurations of a jointed robot to neighborhoods in the workspace that supports fast search for configurations in nearby neighborhoods. This expedites nearest-neighbor search by locating a small set of the most likely candidates for connecting to the query with a local plan. We show that this filtering technique can preserve asymptotically-optimal …


Evaluating Driving Performance Of A Novel Behavior Planning Model On Connected Autonomous Vehicles, Keyur Shah May 2020

Evaluating Driving Performance Of A Novel Behavior Planning Model On Connected Autonomous Vehicles, Keyur Shah

Honors Scholar Theses

Many current algorithms and approaches in autonomous driving attempt to solve the "trajectory generation" or "trajectory following” problems: given a target behavior (e.g. stay in the current lane at the speed limit or change lane), what trajectory should the vehicle follow, and what inputs should the driving agent apply to the throttle and brake to achieve this trajectory? In this work, we instead focus on the “behavior planning” problem—specifically, should an autonomous vehicle change lane or keep lane given the current state of the system?

In addition, current theory mainly focuses on single-vehicle systems, where vehicles do not communicate with …