Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Artificial Intelligence and Robotics

PDF

Research Collection School Of Computing and Information Systems

2023

Meta-learning

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Learning Deep Time-Index Models For Time Series Forecasting, Jiale Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, Steven Hoi Jul 2023

Learning Deep Time-Index Models For Time Series Forecasting, Jiale Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, Steven Hoi

Research Collection School Of Computing and Information Systems

Deep learning has been actively applied to time series forecasting, leading to a deluge of new methods, belonging to the class of historicalvalue models. Yet, despite the attractive properties of time-index models, such as being able to model the continuous nature of underlying time series dynamics, little attention has been given to them. Indeed, while naive deep timeindex models are far more expressive than the manually predefined function representations of classical time-index models, they are inadequate for forecasting, being unable to generalize to unseen time steps due to the lack of inductive bias. In this paper, we propose DeepTime, a …


Locality-Aware Tail Node Embeddings On Homogeneous And Heterogeneous Networks, Zemin Liu, Yuan Fang, Wentao Zhang, Xinming Zhang, Steven C. H. Hoi Jan 2023

Locality-Aware Tail Node Embeddings On Homogeneous And Heterogeneous Networks, Zemin Liu, Yuan Fang, Wentao Zhang, Xinming Zhang, Steven C. H. Hoi

Research Collection School Of Computing and Information Systems

While the state-of-the-art network embedding approaches often learn high-quality embeddings for high-degree nodes with abundant structural connectivity, the quality of the embeddings for low-degree or nodes is often suboptimal due to their limited structural connectivity. While many real-world networks are long-tailed, to date little effort has been devoted to tail node embeddings. In this article, we formulate the goal of learning tail node embeddings as a problem, given the few links on each tail node. In particular, since each node resides in its own local context, we personalize the regression model for each tail node. To reduce overfitting in the …