Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Artificial Intelligence and Robotics

PDF

Research Collection School Of Computing and Information Systems

2022

Neural networks

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Towards Reinterpreting Neural Topic Models Via Composite Activations, Jia Peng Lim, Hady Wirawan Lauw Dec 2022

Towards Reinterpreting Neural Topic Models Via Composite Activations, Jia Peng Lim, Hady Wirawan Lauw

Research Collection School Of Computing and Information Systems

Most Neural Topic Models (NTM) use a variational auto-encoder framework producing K topics limited to the size of the encoder’s output. These topics are interpreted through the selection of the top activated words via the weights or reconstructed vector of the decoder that are directly connected to each neuron. In this paper, we present a model-free two-stage process to reinterpret NTM and derive further insights on the state of the trained model. Firstly, building on the original information from a trained NTM, we generate a pool of potential candidate “composite topics” by exploiting possible co-occurrences within the original set of …


Comai: Enabling Lightweight, Collaborative Intelligence By Retrofitting Vision Dnns, Kasthuri Jayarajah, Dhanuja Wanniarachchige, Tarek Abdelzaher, Archan Misra Apr 2022

Comai: Enabling Lightweight, Collaborative Intelligence By Retrofitting Vision Dnns, Kasthuri Jayarajah, Dhanuja Wanniarachchige, Tarek Abdelzaher, Archan Misra

Research Collection School Of Computing and Information Systems

While Deep Neural Network (DNN) models have transformed machine vision capabilities, their extremely high computational complexity and model sizes present a formidable deployment roadblock for AIoT applications. We show that the complexity-vs-accuracy-vs-communication tradeoffs for such DNN models can be significantly addressed via a novel, lightweight form of “collaborative machine intelligence” that requires only runtime changes to the inference process. In our proposed approach, called ComAI, the DNN pipelines of different vision sensors share intermediate processing state with one another, effectively providing hints about objects located within their mutually-overlapping Field-of-Views (FoVs). CoMAI uses two novel techniques: (a) a secondary shallow ML …