Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Artificial Intelligence and Robotics

PDF

Electronic Thesis and Dissertation Repository

2023

Deep Learning

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Predicting Network Failures With Ai Techniques, Chandrika Saha Aug 2023

Predicting Network Failures With Ai Techniques, Chandrika Saha

Electronic Thesis and Dissertation Repository

Network failure is the unintentional interruption of internet services, resulting in widespread client frustration. It is especially true for time-sensitive services in the healthcare industry, smart grid control, and mobility control, among others. In addition, the COVID-19 pandemic has compelled many businesses to operate remotely, making uninterrupted internet access essential. Moreover, Internet Service Providers (ISPs) lose millions of dollars annually due to network failure, which has a negative impact on their businesses. Currently, redundant network equipment is used as a restoration technique to resolve this issue of network failure. This technique requires a strategy for failure identification and prediction to …


Reducing Negative Transfer Of Random Data In Source-Free Unsupervised Domain Adaptation, Anthony Wong Mar 2023

Reducing Negative Transfer Of Random Data In Source-Free Unsupervised Domain Adaptation, Anthony Wong

Electronic Thesis and Dissertation Repository

In domain adaptation, a model trained on one dataset (source domain) is applied to a different but related dataset (target domain). The most cutting-edge method is unsupervised source-free domain adaptation (SFDA), in which source data, source labels, and target labels are not available during adaptation. This thesis explores a realistic scenario where the target dataset includes some images that are unrelated to the adaptation process. This scenario can occur from errors in data collection or processing. We provide experiments and analysis to show that current state-of-the-art (SOTA) SFDA methods suffer significant performance drops under a specific domain adaptation setup when …


Attention-Based Multi-Source-Free Domain Adaptation For Eeg Emotion Recognition, Amir Hesam Salimnia Feb 2023

Attention-Based Multi-Source-Free Domain Adaptation For Eeg Emotion Recognition, Amir Hesam Salimnia

Electronic Thesis and Dissertation Repository

Electroencephalography (EEG) based emotion recognition in affective brain-computer interfaces has advanced significantly in recent years. Unsupervised domain adaptation (UDA) methods have been successfully used to mitigate the need for large amounts of training data, which is required due to the inter-subject variability of EEG signals. Typical UDA solutions require access to raw source data to leverage the knowledge learned from the labelled source domains (previous subjects) across the target domain (a new subject), raising privacy concerns. To tackle this issue, we propose Attention-based Multi-Source-Free Domain Adaptation (AMFDA) for EEG emotion recognition. AMFDA attempts to transfer knowledge of source models to …