Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

Learning Graphical Models Of Multivariate Functional Data With Applications To Neuroimaging, Jiajing Niu Dec 2022

Learning Graphical Models Of Multivariate Functional Data With Applications To Neuroimaging, Jiajing Niu

All Dissertations

This dissertation investigates the functional graphical models that infer the functional connectivity based on neuroimaging data, which is noisy, high dimensional and has limited samples. The dissertation provides two recipes to infer the functional graphical model: 1) a fully Bayesian framework 2) an end-to-end deep model.

We first propose a fully Bayesian regularization scheme to estimate functional graphical models. We consider a direct Bayesian analog of the functional graphical lasso proposed by Qiao et al. (2019).. We then propose a regularization strategy via the graphical horseshoe. We compare both Bayesian approaches to the frequentist functional graphical lasso, and compare the …


Conceptualization And Application Of Deep Learning And Applied Statistics For Flight Plan Recommendation, Nicholas C. Forrest Mar 2020

Conceptualization And Application Of Deep Learning And Applied Statistics For Flight Plan Recommendation, Nicholas C. Forrest

Theses and Dissertations

The Air Forces Pilot Training Next (PTN) program seeks a more efficient pilot training environment emphasizing the use of virtual reality flight simulators alongside periodic real aircraft experience. The PTN program wants to accelerate the training pace and progress in undergraduate pilot training compared to traditional undergraduate pilot training. Currently, instructor pilots spend excessive time planning and scheduling flights. This research focuses on methods to auto-generate the planning of in-flight events using hybrid filtering and deep learning techniques. The resulting approach captures temporal trends of user-specific and program-wide student performance to recommend a feasible set of graded flight events for …


Unitary And Symmetric Structure In Deep Neural Networks, Kehelwala Dewage Gayan Maduranga Jan 2020

Unitary And Symmetric Structure In Deep Neural Networks, Kehelwala Dewage Gayan Maduranga

Theses and Dissertations--Mathematics

Recurrent neural networks (RNNs) have been successfully used on a wide range of sequential data problems. A well-known difficulty in using RNNs is the vanishing or exploding gradient problem. Recently, there have been several different RNN architectures that try to mitigate this issue by maintaining an orthogonal or unitary recurrent weight matrix. One such architecture is the scaled Cayley orthogonal recurrent neural network (scoRNN), which parameterizes the orthogonal recurrent weight matrix through a scaled Cayley transform. This parametrization contains a diagonal scaling matrix consisting of positive or negative one entries that can not be optimized by gradient descent. Thus the …


Texture-Based Deep Neural Network For Histopathology Cancer Whole Slide Image (Wsi) Classification, Nelson Zange Tsaku Aug 2019

Texture-Based Deep Neural Network For Histopathology Cancer Whole Slide Image (Wsi) Classification, Nelson Zange Tsaku

Master of Science in Computer Science Theses

Automatic histopathological Whole Slide Image (WSI) analysis for cancer classification has been highlighted along with the advancements in microscopic imaging techniques. However, manual examination and diagnosis with WSIs is time-consuming and tiresome. Recently, deep convolutional neural networks have succeeded in histopathological image analysis. In this paper, we propose a novel cancer texture-based deep neural network (CAT-Net) that learns scalable texture features from histopathological WSIs. The innovation of CAT-Net is twofold: (1) capturing invariant spatial patterns by dilated convolutional layers and (2) Reducing model complexity while improving performance. Moreover, CAT-Net can provide discriminative texture patterns formed on cancerous regions of histopathological …


Asl Reverse Dictionary - Asl Translation Using Deep Learning, Ann Nelson, Kj Price, Rosalie Multari May 2019

Asl Reverse Dictionary - Asl Translation Using Deep Learning, Ann Nelson, Kj Price, Rosalie Multari

SMU Data Science Review

The challenges of learning a new language can be reduced with real-time feedback on pronunciation and language usage. Today there are readily available technologies which provide such feedback on spoken languages, by translating the voice of the learner into written text. For someone seeking to learn American Sign Language (ASL), there is however no such feedback application available. A learner of American Sign Language might reference websites or books to obtain an image of a hand sign for a word. This process is like looking up a word in a dictionary, and if the person wanted to know if they …


Improving Vix Futures Forecasts Using Machine Learning Methods, James Hosker, Slobodan Djurdjevic, Hieu Nguyen, Robert Slater Jan 2019

Improving Vix Futures Forecasts Using Machine Learning Methods, James Hosker, Slobodan Djurdjevic, Hieu Nguyen, Robert Slater

SMU Data Science Review

The problem of forecasting market volatility is a difficult task for most fund managers. Volatility forecasts are used for risk management, alpha (risk) trading, and the reduction of trading friction. Improving the forecasts of future market volatility assists fund managers in adding or reducing risk in their portfolios as well as in increasing hedges to protect their portfolios in anticipation of a market sell-off event. Our analysis compares three existing financial models that forecast future market volatility using the Chicago Board Options Exchange Volatility Index (VIX) to six machine/deep learning supervised regression methods. This analysis determines which models provide best …


Quantifying Human Biological Age: A Machine Learning Approach, Syed Ashiqur Rahman Jan 2019

Quantifying Human Biological Age: A Machine Learning Approach, Syed Ashiqur Rahman

Graduate Theses, Dissertations, and Problem Reports

Quantifying human biological age is an important and difficult challenge. Different biomarkers and numerous approaches have been studied for biological age prediction, each with its advantages and limitations. In this work, we first introduce a new anthropometric measure (called Surface-based Body Shape Index, SBSI) that accounts for both body shape and body size, and evaluate its performance as a predictor of all-cause mortality. We analyzed data from the National Health and Human Nutrition Examination Survey (NHANES). Based on the analysis, we introduce a new body shape index constructed from four important anthropometric determinants of body shape and body size: body …


Explorations Into Machine Learning Techniques For Precipitation Nowcasting, Aditya Nagarajan Mar 2017

Explorations Into Machine Learning Techniques For Precipitation Nowcasting, Aditya Nagarajan

Masters Theses

Recent advances in cloud-based big-data technologies now makes data driven solutions feasible for increasing numbers of scientific computing applications. One such data driven solution approach is machine learning where patterns in large data sets are brought to the surface by finding complex mathematical relationships within the data. Nowcasting or short-term prediction of rainfall in a given region is an important problem in meteorology. In this thesis we explore the nowcasting problem through a data driven approach by formulating it as a machine learning problem.

State-of-the-art nowcasting systems today are based on numerical models which describe the physical processes leading to …