Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Fully Electronic Method Of Measuring Post-Release Gap And Gradient/Residual Stress Of A Mems Cantilever, Andrew Stephen Kovacs Apr 2015

Fully Electronic Method Of Measuring Post-Release Gap And Gradient/Residual Stress Of A Mems Cantilever, Andrew Stephen Kovacs

Open Access Dissertations

Smartphones and other wireless devices have become ubiquitous over the past decade, and the RF front-end inside of them has become more complex and disproportionately consumes more power compared to other components. Micro-electromechanical systems (MEMS) have a huge potential to reduce these problems while simultaneously offering superior performance compared to current leading-edge technology. However, MEMS technology has difficulty transitioning from the lab to large-scale manufacturing due to the unpredictability of device lifetime and manufacturability issues. This can be mitigated by investigating how critical material or physical parameters (gap, stress, Young's modulus, material thickness, etc.) vary from manufacturing uncertainties and how …


A Contribution Toward Better Understanding Of Overbanking Tendency In Fixed-Wing Aircraft, Nihad E. Daidzic Feb 2015

A Contribution Toward Better Understanding Of Overbanking Tendency In Fixed-Wing Aircraft, Nihad E. Daidzic

Journal of Aviation Technology and Engineering

The phenomenon of overbanking tendency for a rigid-body, fixed-wing aircraft is investigated. Overbanking tendency is defined as a spontaneous, unbalanced rolling moment that keeps increasing an airplane’s bank angle in steep turns and must be arrested by opposite aileron action. As stated by the Federal Aviation Administration, the overbanking tendency may lead to a loss of control, especially in instrument meteorological conditions. It was found in this study that the speed differential over wing halves in horizontal turns indeed creates a rolling moment that achieves maximum values for bank angles between 45 and 55 degrees. However, this induced rolling moment …