Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Physical Sciences and Mathematics

Uniform Regularity Estimates For The Stokes System In Perforated Domains, Jamison R. Wallace Jan 2024

Uniform Regularity Estimates For The Stokes System In Perforated Domains, Jamison R. Wallace

Theses and Dissertations--Mathematics

We consider the Stokes equations in an unbounded domain $\omega_{\epsilon,\eta}$ perforated by small obstacles, where $\epsilon$ represents the minimal distance between obstacles and $\eta$ is the ratio between the obstacle size and $\epsilon$. We are able to obtain uniform $W^{1,q}$ estimates for solutions to the Stokes equations in such domains with bounding constants depending explicitly on $\epsilon$ and $\eta$.


A Variational Theory For Integral Functionals Involving Finite-Horizon Fractional Gradients, Javier Cueto, Carolin Carolin, Hidde Schönberger Aug 2023

A Variational Theory For Integral Functionals Involving Finite-Horizon Fractional Gradients, Javier Cueto, Carolin Carolin, Hidde Schönberger

Department of Mathematics: Faculty Publications

The center of interest in this work are variational problems with integral functionals depending on nonlocal gradients with finite horizon that correspond to truncated versions of the Riesz fractional gradient. We contribute several new aspects to both the existence theory of these problems and the study of their asymptotic behavior. Our overall proof strategy builds on finding suitable translation operators that allow to switch between the three types of gradients: classical, fractional, and nonlocal. These provide useful technical tools for transferring results from one setting to the other. Based on this approach, we show that quasiconvexity, which is the natural …


Homogenization In Perforated Domains And With Soft Inclusions, Brandon C. Russell Apr 2018

Homogenization In Perforated Domains And With Soft Inclusions, Brandon C. Russell

Brandon Russell

In this dissertation, we first provide a short introduction to qualitative homogenization of elliptic equations and systems. We collect relevant and known results regarding elliptic equations and systems with rapidly oscillating, periodic coefficients, which is the classical setting in homogenization of elliptic equations and systems. We extend several classical results to the so-called case of perforated domains and consider materials reinforced with soft inclusions. We establish quantitative H^1-convergence rates in both settings, and as a result deduce large-scale Lipschitz estimates and Liouville-type estimates for solutions to elliptic systems with rapidly oscillating, periodic, bounded, and measurable coefficients. Finally, we connect these …


Homogenization In Perforated Domains And With Soft Inclusions, Brandon C. Russell Jan 2018

Homogenization In Perforated Domains And With Soft Inclusions, Brandon C. Russell

Theses and Dissertations--Mathematics

In this dissertation, we first provide a short introduction to qualitative homogenization of elliptic equations and systems. We collect relevant and known results regarding elliptic equations and systems with rapidly oscillating, periodic coefficients, which is the classical setting in homogenization of elliptic equations and systems. We extend several classical results to the so called case of perforated domains and consider materials reinforced with soft inclusions. We establish quantitative H1-convergence rates in both settings, and as a result deduce large-scale Lipschitz estimates and Liouville-type estimates for solutions to elliptic systems with rapidly oscillating periodic bounded and measurable coefficients. Finally, …


Homogenization Techniques For Population Dynamics In Strongly Heterogeneous Landscapes, Brian P. Yurk, Christina A. Cobbold Dec 2017

Homogenization Techniques For Population Dynamics In Strongly Heterogeneous Landscapes, Brian P. Yurk, Christina A. Cobbold

Faculty Publications

An important problem in spatial ecology is to understand how population-scale patterns emerge from individual-level birth, death, and movement processes. These processes, which depend on local landscape characteristics, vary spatially and may exhibit sharp transitions through behavioural responses to habitat edges, leading to discontinuous population densities. Such systems can be modelled using reaction–diffusion equations with interface conditions that capture local behaviour at patch boundaries. In this work we develop a novel homogenization technique to approximate the large-scale dynamics of the system. We illustrate our approach, which also generalizes to multiple species, with an example of logistic growth within a periodic …


Reduced Order Models For Beam-Wave Interaction In High Power Microwave Sources, Lokendra Singh Thakur Jan 2017

Reduced Order Models For Beam-Wave Interaction In High Power Microwave Sources, Lokendra Singh Thakur

LSU Doctoral Dissertations

We apply an asymptotic analysis to show that corrugated waveguides can be represented as cylindrical waveguides with smooth metamaterial coatings when the corrugtions are subwavelength. Here the metamaterial delivers an effective anisotropic surface impedance, effective dielectric constant, and imparts novel dispersive effects on signals traveling inside the waveguide. These properties arise from the subwavelength resonances of the metamaterial. For sufficiently deep corrugations, the waveguide exhibits backward wave propagation, which can be understood in the present context as a multi-scale phenomenon resulting from local resonances inside the subwavelength geometry. Our approach is well suited to numerical computation and we provide a …


Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook Dec 2016

Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook

Electronic Theses and Dissertations

This dissertation is concerned with the development of robust numerical solution procedures for the generalized micromechanical analysis of linear and nonlinear constitutive behavior in heterogeneous materials. Although the methods developed are applicable in many engineering, geological, and materials science fields, three main areas are explored in this work. First, a numerical methodology is presented for the thermomechanical analysis of heterogeneous materials with a special focus on real polycrystalline microstructures obtained using electron backscatter diffraction techniques. Asymptotic expansion homogenization and finite element analysis are employed for micromechanical analysis of polycrystalline materials. Effective thermoelastic properties of polycrystalline materials are determined and compared …


Homogenization Of Stokes Systems With Periodic Coefficients, Shu Gu Jan 2016

Homogenization Of Stokes Systems With Periodic Coefficients, Shu Gu

Theses and Dissertations--Mathematics

In this dissertation we study the quantitative theory in homogenization of Stokes systems. We study uniform regularity estimates for a family of Stokes systems with rapidly oscillating periodic coefficients. We establish interior Lipschitz estimates for the velocity and L estimates for the pressure as well as Liouville property for solutions in ℝd. We are able to obtain the boundary W{1,p} estimates in a bounded C1 domain for any 1 < p < ∞. We also study the convergence rates in L2 and H1 of Dirichlet and Neumann problems for Stokes systems with rapidly oscillating periodic coefficients, without any regularity assumptions on the coefficients.


Homogenization Of Nonlinear Partial Differential Equations, Silvia Jiménez Jan 2010

Homogenization Of Nonlinear Partial Differential Equations, Silvia Jiménez

LSU Doctoral Dissertations

This dissertation is concerned with properties of local fields inside composites made from two materials with different power law behavior. This simple constitutive model is frequently used to describe several phenomena ranging from plasticity to optical nonlinearities in dielectric media. We provide the corrector theory for the strong approximation of fields inside composites made from two power law materials with different exponents. The correctors are used to develop bounds on the local singularity strength for gradient fields inside microstructured media. The bounds are multiscale in nature and can be used to measure the amplification of applied macroscopic fields by the …


Multiscale Analysis Of Heterogeneous Media For Local And Nonlocal Continuum Theories, Bacim Alali Jan 2008

Multiscale Analysis Of Heterogeneous Media For Local And Nonlocal Continuum Theories, Bacim Alali

LSU Doctoral Dissertations

The dissertation provides new multiscale methods for the analysis of heterogeneous media. The first part of the dissertation treats heterogeneous media using the theory of linear elasticity. In this context, a methodology is presented for bounding the higher order moments of the local stress and strain fields inside random elastic media. Optimal lower bounds that are given in terms of the applied loading and the volume (area) fractions for random two-phase composites are presented. These bounds provide a means to measure load transfer across length scales relating the excursions of the local fields to applied loads. The second part of …


Multiscale Strain Analysis, Timothy Donald Breitzman Jan 2005

Multiscale Strain Analysis, Timothy Donald Breitzman

LSU Doctoral Dissertations

The mathematical homogenization and corrector theory relevant to prestressed heterogeneous materials in the linear-elastic regime is discussed. A suitable corrector theory is derived to reconstruct the local strain field inside the composite. Based on this theory, we develop an inexpensive numerical method for multi scale strain analysis within a prestressed heterogeneous material. The theory also provides a characterization of the macroscopic strength domain. The strength domain places constraints on the homogenized strain field which guarantee that the actual strain in the heterogeneous material lies inside the strength domain of each material participating in the structure.


Solitary Waves In Layered Nonlinear Media, Randall J. Leveque, Darryl H. Yong Jun 2003

Solitary Waves In Layered Nonlinear Media, Randall J. Leveque, Darryl H. Yong

All HMC Faculty Publications and Research

We study longitudinal elastic strain waves in a one-dimensional periodically layered medium, alternating between two materials with different densities and stress-strain relations. If the impedances are different, dispersive effects are seen due to reflection at the interfaces. When the stress-strain relations are nonlinear, the combination of dispersion and nonlinearity leads to the appearance of solitary waves that interact like solitons. We study the scaling properties of these solitary waves and derive a homogenized system of equations that includes dispersive terms. We show that pseudospectral solutions to these equations agree well with direct solutions of the hyperbolic conservation laws in the …


Averaged Motion Of Charged Particles In A Curved Strip, Avner Friedman, Chaocheng Huang Dec 1997

Averaged Motion Of Charged Particles In A Curved Strip, Avner Friedman, Chaocheng Huang

Mathematics and Statistics Faculty Publications

This paper is concerned with the motion of electrically charged particles in a "curved" infinite strip.