Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Applied Mathematics

2020

Theses/Dissertations

Southern Methodist University

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Uncertainty Quantification Of Nonreflecting Boundary Schemes, Brian Citty Dec 2020

Uncertainty Quantification Of Nonreflecting Boundary Schemes, Brian Citty

Mathematics Theses and Dissertations

Numerical methods have been developed to solve partial differential equations involving the far-field radiation of waves. In addition, there has been recent interest in uncertainty quantification- a burgeoning field involving solving PDEs where random variables are used to model uncertainty in the data. In this thesis we will apply uncertainty quantification methodology to the 1D and 2D wave equation with nonreflecting boundary. We first derive a boundary condition for the 1D wave equation assuming several models of the random wave speed. Later we use our result to compare to an asymptotic SDE approach, and finally we repeat our analysis for …


Modeling Fluid Phenomena In The Context Of The Constrained Vapor Bubble System, James Barrett Dec 2020

Modeling Fluid Phenomena In The Context Of The Constrained Vapor Bubble System, James Barrett

Mathematics Theses and Dissertations

This thesis focuses on the fluid phenomena observed within what is known as the constrained vapor bubble system. The constrained vapor bubble system is a closed system consisting of a quartz cuvette partially filled with liquid and used as a coolant device. Heat is applied to the heater end which causes the liquid to evaporate and condense on the cooled end of the cuvette. Liquid travels back to the heated end via capillary flow in the corners. A pure vapor bubble is formed in the center of the cuvette giving rise to the name of the experiment. The constrained vapor …


Multigrid For The Nonlinear Power Flow Equations, Enrique Pereira Batista Dec 2020

Multigrid For The Nonlinear Power Flow Equations, Enrique Pereira Batista

Mathematics Theses and Dissertations

The continuously changing structure of power systems and the inclusion of renewable
energy sources are leading to changes in the dynamics of modern power grid,
which have brought renewed attention to the solution of the AC power flow equations.
In particular, development of fast and robust solvers for the power flow problem
continues to be actively investigated. A novel multigrid technique for coarse-graining
dynamic power grid models has been developed recently. This technique uses an
algebraic multigrid (AMG) coarsening strategy applied to the weighted
graph Laplacian that arises from the power network's topology for the construction
of coarse-grain approximations to …


Advection-Reaction-Diffusion Model Of Drug Concentration In A Lymph Node, Ting Yan Aug 2020

Advection-Reaction-Diffusion Model Of Drug Concentration In A Lymph Node, Ting Yan

Mathematics Theses and Dissertations

It is recognized that there exist reservoirs of HIV located outside the bloodstream, and that these reservoirs hinder the efficacy of antiretroviral medication regimens in combating the virus. The prevailing theories regarding these reservoirs point to the lymphatic system. In this work, we discuss a novel computational model of viral dynamics in the lymph node, to allow numerical studies of viral “reservoirs” causing reinfection. Our model consists of a system of advection-reaction-diffusion partial differential equations (PDEs), where the diffusion coefficients vary between species (virus, drugs, lymphocytes) and include discontinuous jumps to capture differing properties of internal lymph node structures. We …


Cell Assembly Detection In Low Firing-Rate Spike Train Data, Phan Minh Duc Truong Aug 2020

Cell Assembly Detection In Low Firing-Rate Spike Train Data, Phan Minh Duc Truong

Mathematics Theses and Dissertations

Cell assemblies, defined as groups of neurons forming temporal spike coordination, are thought to be fundamental units supporting major cognitive functions. However, detecting cell assemblies is challenging since they can occur at a range of time scales and with a range of precisions, from synchronous spikes to co-variations in firing rate. In this dissertation, we use a recently published cell assembly detection (CAD) algorithm that is capable of detecting assemblies at a range of time scales and precisions. We first showed that the CAD method can be applied to sparser spike train data than what have previously been reported. This …


The Boundary Element Method For Parabolic Equation And Its Implementation In Bem++, Sihao Wang May 2020

The Boundary Element Method For Parabolic Equation And Its Implementation In Bem++, Sihao Wang

Mathematics Theses and Dissertations

The goal of this work is to develop a fast method for solving Galerkin discretizations of boundary integral formulations of the heat equation. The main contribution of this work is to devise a new fast algorithm for evaluating the dense matrices of the discretized integral equations.

Similar to the parabolic FMM, this method is based on a subdivision of the matrices into an appropriate hierarchical block structure. However, instead of an expansion of the kernel in both space and time we interpolate kernel in the temporal variables and use of the adaptive cross approximation (ACA) in the spatial variables.

The …


A New Class Of Discontinuous Galerkin Methods For Wave Equations In Second-Order Form, Lu Zhang May 2020

A New Class Of Discontinuous Galerkin Methods For Wave Equations In Second-Order Form, Lu Zhang

Mathematics Theses and Dissertations

Discontinuous Galerkin methods are widely used in many practical fields. In this thesis, we focus on a new class of discontinuous Galerkin methods for second-order wave equations. This thesis is constructed by three main parts. In the first part, we study the convergence properties of the energy-based discontinuous Galerkin proposed in [3] for wave equations. We improve the existing suboptimal error estimates to an optimal convergence rate in the energy norm. In the second part, we generalize the energy-based discontinuous Galerkin method proposed in [3] to the advective wave equation and semilinear wave equation in second-order form. Energy-conserving or energy-dissipating …