Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Through-The-Wall Radar Detection Using Machine Learning, Aihua W. Wood, Ryan Wood, Matthew Charnley Aug 2020

Through-The-Wall Radar Detection Using Machine Learning, Aihua W. Wood, Ryan Wood, Matthew Charnley

Faculty Publications

This paper explores the through-the-wall inverse scattering problem via machine learning. The reconstruction method seeks to discover the shape, location, and type of hidden objects behind walls, as well as identifying certain material properties of the targets. We simulate RF sources and receivers placed outside the room to generate observation data with objects randomly placed inside the room. We experiment with two types of neural networks and use an 80-20 train-test split for reconstruction and classification.


Modeling Nonlinear Heat Transfer For A Pin-On-Disc Sliding System, Brian A. Boardman Mar 2020

Modeling Nonlinear Heat Transfer For A Pin-On-Disc Sliding System, Brian A. Boardman

Theses and Dissertations

The objective of this research is to develop a numerical method to characterize heat transfer and wear rates for samples of Vascomax® 300, or Maraging 300, steel. A pin-on-disc experiment was conducted in which samples were exposed to a high-pressure, high-speed, sliding contact environment. This sliding contact generates frictional heating that influences the temperature distribution and wear characteristics of the test samples. A two-dimensional nonlinear heat transfer equation is discretized and solved via a second-order explicit finite difference scheme to predict the transient temperature distribution of the pin. This schematic is used to predict the removal of material from the …


An Ultra-Sparse Approximation Of Kinetic Solutions To Spatially Homogeneous Flows Of Non-Continuum Gas, Alexander Alekseenko, Amy Grandilli, Aihua W. Wood Feb 2020

An Ultra-Sparse Approximation Of Kinetic Solutions To Spatially Homogeneous Flows Of Non-Continuum Gas, Alexander Alekseenko, Amy Grandilli, Aihua W. Wood

Faculty Publications

We consider a compact approximation of the kinetic velocity distribution function by a sum of isotropic Gaussian densities in the problem of spatially homogeneous relaxation. Derivatives of the macroscopic parameters of the approximating Gaussians are obtained as solutions to a linear least squares problem derived from the Boltzmann equation with full collision integral. Our model performs well for flows obtained by mixing upstream and downstream conditions of normal shock wave with Mach number 3. The model was applied to explore the process of approaching equilibrium in a spatially homogeneous flow of gas. Convergence of solutions with respect to the model …


A Sequential Partial Information Bomber‐Defender Shooting Problem, Krishna Kalyanam, David W. Casbeer, Meir Pachter Feb 2020

A Sequential Partial Information Bomber‐Defender Shooting Problem, Krishna Kalyanam, David W. Casbeer, Meir Pachter

Faculty Publications

No abstract provided.