Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Applied Mathematics

Mathematics & Statistics Faculty Publications

Secondary instability

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Induced Mach Wave-Flame Interactions In Laminar Supersonic Fuel Jets, F. Q. Hu, T. L. Jackson, D. G. Lasseigne, C. E. Grosch Jan 1993

Induced Mach Wave-Flame Interactions In Laminar Supersonic Fuel Jets, F. Q. Hu, T. L. Jackson, D. G. Lasseigne, C. E. Grosch

Mathematics & Statistics Faculty Publications

A model problem is proposed to investigate the steady response of a reacting, compressible laminar jet to Mach waves generated by wavy walls in a channel of finite width. The model consists of a two-dimensional jet of fuel emerging into a stream of oxidizer which are allowed to mix and react in the presence of the Mach waves. The governing equations are taken to be the steady parabolized Navier-Stokes equations which are solved numerically. The kinetics is assumed to be a one-step, irreversible reaction of the Arrhenius type. Two important questions on the Mach wave-flame interactions are discussed: (i) how …


Parametric Instability Of Supersonic Shear Layers Induced By Periodic Mach Waves, Fang Q. Hu, Christopher K. W. Tam Jan 1991

Parametric Instability Of Supersonic Shear Layers Induced By Periodic Mach Waves, Fang Q. Hu, Christopher K. W. Tam

Mathematics & Statistics Faculty Publications

It is suggested that parametric instability can be induced in a confined supersonic shear layer by the use of a periodic Mach wave system generated by a wavy wall. The existence of such an instability solution is demonstrated computationally by solving the Floquet system of equations. The solution is constructed by means of a Fourier-Chebyshev expansion. Numerical convergence is assured by using a very large number of Fourier and Chebyshev basis functions. The computed growth rate of the induced flow instability is found to vary linearly with the amplitude of the mach waves when the amplitude is not excessively large. …