Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Models Of Internal Waves In The Presence Of Currents, Alan Compelli, Rossen Ivanov Jan 2016

Models Of Internal Waves In The Presence Of Currents, Alan Compelli, Rossen Ivanov

Conference papers

A fluid system consisting of two domains is examined. The system is considered as being bounded at the bottom and top by a flatbed and wave-free surface respectively. An internal wave propagating in one direction, driven by gravity, acts as a free common interface between the fluids. Various current profiles are considered. The Hamiltonian of the system is determined and expressed in terms of canonical wave-related variables. Limiting behaviour is examined and compared to that of other known models. The linearised equations as well as long-wave approximations are formulated. The presented models provide potential applications to modelling of internal geophysical …


Factorized Runge-Kutta-Chebyshev Methods, Stephen O'Sullivan Jan 2016

Factorized Runge-Kutta-Chebyshev Methods, Stephen O'Sullivan

Conference papers

The second-order extended stability Factorized Runge-Kutta-Chebyshev (FRKC2) class of explicit schemes for the integration of large systems of PDEs with diffusive terms is presented. FRKC2 schemes are straightforward to implement through ordered sequences of forward Euler steps with complex stepsizes, and easily parallelised for large scale problems on distributed architectures.

Preserving 7 digits for accuracy at 16 digit precision, the schemes are theoretically capable of maintaining internal stability at acceleration factors in excess of 6000 with respect to standard explicit Runge-Kutta methods. The stability domains have approximately the same extents as those of RKC schemes, and are a third longer …


A Competitive Random Sequential Adsorption Model For Immunoassay Activity, Dana Mackey, Eilis Kelly, Robert Nooney Jan 2016

A Competitive Random Sequential Adsorption Model For Immunoassay Activity, Dana Mackey, Eilis Kelly, Robert Nooney

Conference papers

Immunoassays rely on highly specific reactions between antibodies and antigens and are used in biomedical diagnostics applications to detect biomarkers for a variety of diseases. Antibody immobilization to solid interfaces through random adsorption is a widely used technique but has the disadvantage of severely reducing the antigen binding activity and, consequently, the assay performance. This paper proposes a simple mathematical framework, based on the theory known as competitive random sequential adsorption (CRSA), for describing how the activity of immobilized antibodies depends on their orientation and packing density and generalizes a previous model by introducing the antibody aspect ratio as an …