Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Height Transitions, Shape Evolution, And Coarsening Of Equilibrating Quantum Nanoislands, Mikhail Khenner Oct 2017

Height Transitions, Shape Evolution, And Coarsening Of Equilibrating Quantum Nanoislands, Mikhail Khenner

Mathematics Faculty Publications

No abstract provided.


Analysis And Implementation Of Numerical Methods For Solving Ordinary Differential Equations, Muhammad Sohel Rana Oct 2017

Analysis And Implementation Of Numerical Methods For Solving Ordinary Differential Equations, Muhammad Sohel Rana

Masters Theses & Specialist Projects

Numerical methods to solve initial value problems of differential equations progressed quite a bit in the last century. We give a brief summary of how useful numerical methods are for ordinary differential equations of first and higher order. In this thesis both computational and theoretical discussion of the application of numerical methods on differential equations takes place. The thesis consists of an investigation of various categories of numerical methods for the solution of ordinary differential equations including the numerical solution of ordinary differential equations from a number of practical fields such as equations arising in population dynamics and astrophysics. It …


Interplay Of Quantum Size Effect, Anisotropy And Surface Stress Shapes The Instability Of Thin Metal Films, Mikhail Khenner Aug 2017

Interplay Of Quantum Size Effect, Anisotropy And Surface Stress Shapes The Instability Of Thin Metal Films, Mikhail Khenner

Mathematics Faculty Publications

Morphological instability of a planar surface ([111], [011], or [001]) of an ultra-thin metal film is studied in a parameter space formed by three major effects (the quantum size effect, the surface energy anisotropy and the surface stress) that influence a film dewetting. The analysis is based on the extended Mullins equation, where the effects are cast as functions of the film thickness. The formulation of the quantum size effect (Z. Zhang et al., PRL 80, 5381 (1998)) includes the oscillation of the surface energy with thickness caused by electrons confinement. By systematically comparing the effects, their contributions into the …


An Investigation Of The Accuracy Of Parallel Analysis For Determining The Number Of Factors In A Factor Analysis, Mandy Matsumoto Jun 2017

An Investigation Of The Accuracy Of Parallel Analysis For Determining The Number Of Factors In A Factor Analysis, Mandy Matsumoto

Mahurin Honors College Capstone Experience/Thesis Projects

Exploratory factor analysis is an analytic technique used to determine the number of factors in a set of data (usually items on a questionnaire) for which the factor structure has not been previously analyzed. Parallel analysis (PA) is a technique used to determine the number of factors in a factor analysis. There are a number of factors that affect the results of a PA: the choice of the eigenvalue percentile, the strength of the factor loadings, the number of variables, and the sample size of the study. Although PA is the most accurate method to date to determine which factors …


Numerically Solving A System Of Pdes Modeling Chronic Wounds Treated With Oxygen Therapy, Stefan Stryker Jun 2017

Numerically Solving A System Of Pdes Modeling Chronic Wounds Treated With Oxygen Therapy, Stefan Stryker

Mahurin Honors College Capstone Experience/Thesis Projects

Chronic wounds such as diabetic foot ulcers are the leading cause of non-traumatic amputations in developed countries. For researchers to better understand the physiology of these wounds, a mathematical model describing oxygen levels at the wound site can be used to help predict healing responses. The model utilizes equations that are modified from work by Guffey (2015) that consists of four variables – oxygen, bacteria, neutrophils, and chemoattractant within a system of partial differential equations. Our research focuses on numerically solving these partial differential equations using a finite volume approach. This numerical solver will be important for future research in …


Discrete Fractional Hermite-Hadamard Inequality, Aykut Arslan Apr 2017

Discrete Fractional Hermite-Hadamard Inequality, Aykut Arslan

Masters Theses & Specialist Projects

This thesis is comprised of three main parts: The Hermite-Hadamard inequality on discrete time scales, the fractional Hermite-Hadamard inequality, and Karush-Kuhn- Tucker conditions on higher dimensional discrete domains. In the first part of the thesis, Chapters 2 & 3, we define a convex function on a special time scale T where all the time points are not uniformly distributed on a time line. With the use of the substitution rules of integration we prove the Hermite-Hadamard inequality for convex functions defined on T. In the fourth chapter, we introduce fractional order Hermite-Hadamard inequality and characterize convexity in terms of this …


Stability Of Linear Difference Systems In Discrete And Fractional Calculus, Aynur Er Apr 2017

Stability Of Linear Difference Systems In Discrete And Fractional Calculus, Aynur Er

Masters Theses & Specialist Projects

The main purpose of this thesis is to define the stability of a system of linear difference equations of the form,

∇y(t) = Ay(t),

and to analyze the stability theory for such a system using the eigenvalues of the corresponding matrix A in nabla discrete calculus and nabla fractional discrete calculus. Discrete exponential functions and the Putzer algorithms are studied to examine the stability theorem.

This thesis consists of five chapters and is organized as follows. In the first chapter, the Gamma function and its properties are studied. Additionally, basic definitions, properties and some main theorem of discrete calculus are …