Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Applied Mathematics

Portland State University

2016

Autonomous vehicles -- Mathematical models

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Transients In The Synchronization Of Asymmetrically Coupled Oscillator Arrays, Carlos E. Cantos, David K. Hammond, J.J.P. Veerman Sep 2016

Transients In The Synchronization Of Asymmetrically Coupled Oscillator Arrays, Carlos E. Cantos, David K. Hammond, J.J.P. Veerman

Mathematics and Statistics Faculty Publications and Presentations

We consider the transient behavior of a large linear array of coupled linear damped harmonic oscillators following perturbation of a single element. Our work is motivated by modeling the behavior of flocks of autonomous vehicles. We first state a number of conjectures that allow us to derive an explicit characterization of the transients, within a certain parameter regime Ω. As corollaries we show that minimizing the transients requires considering non-symmetric coupling, and that within Ω the computed linear growth in N of the transients is independent of (reasonable) boundary conditions.


Signal Velocity In Oscillator Arrays, Carlos E. Cantos, David K. Hammond, J. J. P. Veerman Jan 2016

Signal Velocity In Oscillator Arrays, Carlos E. Cantos, David K. Hammond, J. J. P. Veerman

Mathematics and Statistics Faculty Publications and Presentations

We investigate a system of coupled oscillators on the circle, which arises from a simple model for behavior of large numbers of autonomous vehicles. The model considers asymmetric, linear, decentralized dynamics, where the acceleration of each vehicle depends on the relative positions and velocities between itself and a set of local neighbors. We first derive necessary and sufficient conditions for asymptotic stability, then derive expressions for the phase velocity of propagation of disturbances in velocity through this system. We show that the high frequencies exhibit damping, which implies existence of well-defined signal velocities c+>0 and c−f(x−c+t) in the direction …