Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Monolithic Multiphysics Simulation Of Hypersonic Aerothermoelasticity Using A Hybridized Discontinuous Galerkin Method, William Paul England May 2023

Monolithic Multiphysics Simulation Of Hypersonic Aerothermoelasticity Using A Hybridized Discontinuous Galerkin Method, William Paul England

Theses and Dissertations

This work presents implementation of a hybridized discontinuous Galerkin (DG) method for robust simulation of the hypersonic aerothermoelastic multiphysics system. Simulation of hypersonic vehicles requires accurate resolution of complex multiphysics interactions including the effects of high-speed turbulent flow, extreme heating, and vehicle deformation due to considerable pressure loads and thermal stresses. However, the state-of-the-art procedures for hypersonic aerothermoelasticity are comprised of low-fidelity approaches and partitioned coupling schemes. These approaches preclude robust design and analysis of hypersonic vehicles for a number of reasons. First, low-fidelity approaches limit their application to simple geometries and lack the ability to capture small scale flow …


Variational And Adaptive Non-Local Image Denoising Using Edge Detection And K − Means Clustering, Shiraz Mujahid May 2023

Variational And Adaptive Non-Local Image Denoising Using Edge Detection And K − Means Clustering, Shiraz Mujahid

Theses and Dissertations

With the increased presence of image-based data in modern applications, the need for robust methods of image denoising grows greater. The work presented herein considers two of the most ubiquitous approaches towards image denoising: variational and non-local methods. The effectiveness of these methods is assessed using quantitatively using peak signal-to-noise ratio and structural similarity index measure metrics. This study employs ��−means clustering, an unsupervised machine learning algorithm, to isolate the most dominant cluster centroids within the incoming data and propose the introduction of a new adaptive parameter into the non-local means framework. Motivated by the fact that a majority of …


A Novel Method For Sensitivity Analysis Of Time-Averaged Chaotic System Solutions, Christian A. Spencer-Coker May 2022

A Novel Method For Sensitivity Analysis Of Time-Averaged Chaotic System Solutions, Christian A. Spencer-Coker

Theses and Dissertations

The direct and adjoint methods are to linearize the time-averaged solution of bounded dynamical systems about one or more design parameters. Hence, such methods are one way to obtain the gradient necessary in locally optimizing a dynamical system’s time-averaged behavior over those design parameters. However, when analyzing nonlinear systems whose solutions exhibit chaos, standard direct and adjoint sensitivity methods yield meaningless results due to time-local instability of the system. The present work proposes a new method of solving the direct and adjoint linear systems in time, then tests that method’s ability to solve instances of the Lorenz system that exhibit …


A Novel Chebyshev Wavelet Method For Solving Fractional-Order Optimal Control Problems, Ghodsieh Ghanbari May 2022

A Novel Chebyshev Wavelet Method For Solving Fractional-Order Optimal Control Problems, Ghodsieh Ghanbari

Theses and Dissertations

This thesis presents a numerical approach based on generalized fractional-order Chebyshev wavelets for solving fractional-order optimal control problems. The exact value of the Riemann– Liouville fractional integral operator of the generalized fractional-order Chebyshev wavelets is computed by applying the regularized beta function. We apply the given wavelets, the exact formula, and the collocation method to transform the studied problem into a new optimization problem. The convergence analysis of the proposed method is provided. The present method is extended for solving fractional-order, distributed-order, and variable-order optimal control problems. Illustrative examples are considered to show the advantage of this method in comparison …