Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Curve Tracking Control Under State Constraints And Uncertainties, Robert Kelly Sizemore Jul 2018

Curve Tracking Control Under State Constraints And Uncertainties, Robert Kelly Sizemore

LSU Doctoral Dissertations

We study a class of steering control problems for free-moving particles tracking a curve in the plane and also in a three-dimensional environment, which are central problems in robotics. In the two-dimensional case, we provide adaptive controllers for curve tracking under unknown curvatures and control uncertainty. The system dynamics include a nonlinear dependence on the curvature, and are coupled with an estimator for the unknown curvature to form the augmented error dynamics. This nonlinear dependence puts our curvature identification objective outside the scope of existing adaptive tracking and parameter identification results that were limited to cases where the unknown parameters …


Non-Local Methods In Fracture Dynamics, Eyad Said Jun 2018

Non-Local Methods In Fracture Dynamics, Eyad Said

LSU Doctoral Dissertations

We first introduce a regularized model for free fracture propagation based on non-local potentials. We work within the small deformation setting and the model is developed within a state based peridynamic formulation. At each instant of the evolution we identify the softening zone where strains lie above the strength of the material. We show that deformation discontinuities associated with flaws larger than the length scale of non-locality $\delta$ can become unstable and grow. An explicit inequality is found that shows that the volume of the softening zone goes to zero linearly with the length scale of non-local interaction. This scaling …


Backstepping And Sequential Predictors For Control Systems, Jerome Avery Weston Jun 2018

Backstepping And Sequential Predictors For Control Systems, Jerome Avery Weston

LSU Doctoral Dissertations

We provide new methods in mathematical control theory for two significant classes of control systems with time delays, based on backstepping and sequential prediction. Our bounded backstepping results ensure global asymptotic stability for partially linear systems with an arbitrarily large number of integrators. We also build sequential predictors for time-varying linear systems with time-varying delays in the control, sampling in the control, and time-varying measurement delays. Our bounded backstepping results are novel because of their use of converging-input-converging-state conditions, which make it possible to solve feedback stabilization problems under input delays and under boundedness conditions on the feedback control. Our …


Spectra Of Quantum Trees And Orthogonal Polynomials, Zhaoxia Wang Jun 2018

Spectra Of Quantum Trees And Orthogonal Polynomials, Zhaoxia Wang

LSU Doctoral Dissertations

We investigate the spectrum of regular quantum-graph trees, where the edges are endowed with a Schr\"odinger operator with self-adjoint Robin vertex conditions. It is known that, for large eigenvalues, the Robin spectrum approaches the Neumann spectrum. In this research, we compute the lower Robin spectrum. The spectrum can be obtained from the roots of a sequence of orthogonal polynomials involving two variables. As the length of the quantum tree increases, the spectrum approaches a band-gap structure. We find that the lowest band tends to minus infinity as the Robin parameter increases, whereas the rest of the bands remain positive. Unexpectedly, …


General Stochastic Integral And Itô Formula With Application To Stochastic Differential Equations And Mathematical Finance, Jiayu Zhai Mar 2018

General Stochastic Integral And Itô Formula With Application To Stochastic Differential Equations And Mathematical Finance, Jiayu Zhai

LSU Doctoral Dissertations

A general stochastic integration theory for adapted and instantly independent stochastic processes arises when we consider anticipative stochastic differential equations. In Part I of this thesis, we conduct a deeper research on the general stochastic integral introduced by W. Ayed and H.-H. Kuo in 2008. We provide a rigorous mathematical framework for the integral in Chapter 2, and prove that the integral is well-defined. Then a general Itô formula is given. In Chapter 3, we present an intrinsic property, near-martingale property, of the general stochastic integral, and Doob-Meyer's decomposition for near-submartigales. We apply the new stochastic integration theory to several …