Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physical Sciences and Mathematics

Finland's Economic Freeze, Shivang Mehta Sep 2016

Finland's Economic Freeze, Shivang Mehta

Claremont-UC Undergraduate Research Conference on the European Union

Abstract

The Eurozone sovereign debt crisis has been well documented and so has Germany’s booming manufacturing economy but these events are relatively easy to explain. Greece’s troubles can easily be traced to its social security structure and lack of land registry while Germany’s success is a result of labour reforms, an undervalued currency and an emphasis on small scale businesses which form the backbone of the economy. A relatively paradoxical case has been that of Finland; ranked second for global innovation by the World Economic Forum and with over $1.8 billion being invested by the government in the country’s tech …


Newton's Law Of Cooling, Caleb J. Emmons Jan 2016

Newton's Law Of Cooling, Caleb J. Emmons

Journal of Humanistic Mathematics

A poem reflecting three different viewpoints on Newton's Law of Cooling.


The Global Stability Of The Solution To The Morse Potential In A Catastrophic Regime, Weerapat Pittayakanchit Jan 2016

The Global Stability Of The Solution To The Morse Potential In A Catastrophic Regime, Weerapat Pittayakanchit

HMC Senior Theses

Swarms of animals exhibit aggregations whose behavior is a challenge for mathematicians to understand. We analyze this behavior numerically and analytically by using the pairwise interaction model known as the Morse potential. Our goal is to prove the global stability of the candidate local minimizer in 1D found in A Primer of Swarm Equilibria. Using the calculus of variations and eigenvalues analysis, we conclude that the candidate local minimizer is a global minimum with respect to all solution smaller than its support. In addition, we manage to extend the global stability condition to any solutions whose support has a single …


Hopper Bands: Locust Aggregation, Ryan C. Jones Jan 2016

Hopper Bands: Locust Aggregation, Ryan C. Jones

HMC Senior Theses

Locust swarms cause famine and hunger in parts of Sub-Saharan Africa as they travel across croplands and eat vegetation. Current models start with biological properties of locusts and analyze the macroscopic behavior of the system. These models exhibit the desired migratory behavior, but do so with too many parameters. To account for this, a new model, the Alignment and Intermittent Motion (AIM) model, is derived with minimal assumptions. AIM is constructed with regards to locust biology, allowing it to elicit biologically correct locust behavior: the most noteworthy being the fingering of hopper bands. A Particle-in-Cell method is used to optimize …


An Interactive Tool For The Computational Exploration Of Integrodifference Population Models, Kennedy Agwamba Jan 2016

An Interactive Tool For The Computational Exploration Of Integrodifference Population Models, Kennedy Agwamba

HMC Senior Theses

Mathematical modeling of population dynamics can provide novel insight to the growth and dispersal patterns for a variety of species populations, and has become vital to the preservation of biodiversity on a global-scale. These growth and dispersal stages can be modeled using integrodifference equations that are discrete in time and continuous in space. Previous studies have identified metrics that can determine whether a given species will persist or go extinct under certain model parameters. However, a need for computational tools to compute these metrics has limited the scope and analysis within many of these studies. We aim to create computational …


Mathematical Modeling Of Blood Coagulation, Joana L. Perdomo Jan 2016

Mathematical Modeling Of Blood Coagulation, Joana L. Perdomo

HMC Senior Theses

Blood coagulation is a series of biochemical reactions that take place to form a blood clot. Abnormalities in coagulation, such as under-clotting or over- clotting, can lead to significant blood loss, cardiac arrest, damage to vital organs, or even death. Thus, understanding quantitatively how blood coagulation works is important in informing clinical decisions about treating deficiencies and disorders. Quantifying blood coagulation is possible through mathematical modeling. This review presents different mathematical models that have been developed in the past 30 years to describe the biochemistry, biophysics, and clinical applications of blood coagulation research. This review includes the strengths and limitations …


Pattern Recognition In High-Dimensional Data, Matthew Dannenberg Jan 2016

Pattern Recognition In High-Dimensional Data, Matthew Dannenberg

HMC Senior Theses

Vast amounts of data are produced all the time. Yet this data does not easily equate to useful information: extracting information from large amounts of high dimensional data is nontrivial. People are simply drowning in data. A recent and growing source of high-dimensional data is hyperspectral imaging. Hyperspectral images allow for massive amounts of spectral information to be contained in a single image. In this thesis, a robust supervised machine learning algorithm is developed to efficiently perform binary object classification on hyperspectral image data by making use of the geometry of Grassmann manifolds. This algorithm can consistently distinguish between a …


Steady State Solutions For A System Of Partial Differential Equations Arising From Crime Modeling, Bo Li Jan 2016

Steady State Solutions For A System Of Partial Differential Equations Arising From Crime Modeling, Bo Li

HMC Senior Theses

I consider a model for the control of criminality in cities. The model was developed during my REU at UCLA. The model is a system of partial differential equations that simulates the behavior of criminals and where they may accumulate, hot spots. I have proved a prior bounds for the partial differential equations in both one-dimensional and higher dimensional case, which proves the attractiveness and density of criminals in the given area will not be unlimitedly high. In addition, I have found some local bifurcation points in the model.


Topological Data Analysis For Systems Of Coupled Oscillators, Alec Dunton Jan 2016

Topological Data Analysis For Systems Of Coupled Oscillators, Alec Dunton

HMC Senior Theses

Coupled oscillators, such as groups of fireflies or clusters of neurons, are found throughout nature and are frequently modeled in the applied mathematics literature. Earlier work by Kuramoto, Strogatz, and others has led to a deep understanding of the emergent behavior of systems of such oscillators using traditional dynamical systems methods. In this project we outline the application of techniques from topological data analysis to understanding the dynamics of systems of coupled oscillators. This includes the examination of partitions, partial synchronization, and attractors. By looking for clustering in a data space consisting of the phase change of oscillators over a …


Topic Analysis Of Tweets On The European Refugee Crisis Using Non-Negative Matrix Factorization, Chong Shen Jan 2016

Topic Analysis Of Tweets On The European Refugee Crisis Using Non-Negative Matrix Factorization, Chong Shen

CMC Senior Theses

The ongoing European Refugee Crisis has been one of the most popular trending topics on Twitter for the past 8 months. This paper applies topic modeling on bulks of tweets to discover the hidden patterns within these social media discussions. In particular, we perform topic analysis through solving Non-negative Matrix Factorization (NMF) as an Inexact Alternating Least Squares problem. We accelerate the computation using techniques including tweet sampling and augmented NMF, compare NMF results with different ranks and visualize the outputs through topic representation and frequency plots. We observe that supportive sentiments maintained a strong presence while negative sentiments such …