Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Physical Sciences and Mathematics

Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman Dec 2011

Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman

Mathematics Faculty Publications

Dewetting of pulsed-laser irradiated, thin (< 20 nm), optically reflective metallic bilayers on an optically transparent substrate with a reflective support layer is studied within the lubrication equations model. A steady-state bilayer film thickness (h) dependent temperature profile is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Large thermocapillary forces are observed along the plane of the liquid-liquid and liquid-gas interfaces due to this h-dependent temperature, which, in turn, is strongly influenced by the h-dependent laser light reflection and absorption. Consequently the dewetting is a result of the competition between thermocapillary and intermolecular forces. A linear analysis of the dewetting length scales established that the non-isothermal calculations better predict the experimental results as compared to the isothermal case within the bounding Hamaker coefficients. Subsequently, a computational non-linear dynamics study of the dewetting pathway was performed for Ag/Co and Co/Ag bilayer systems to predict the morphology evolution. We found that the systems evolve towards formation of different morphologies, including core-shell, embedded, or stacked nanostructure morphologies.


Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman Dec 2011

Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman

Mikhail Khenner

Dewetting of pulsed-laser irradiated, thin (< 20 nm), optically reflective metallic bilayers on an optically transparent substrate with a reflective support layer is studied within the lubrication equations model. A steady-state bilayer film thickness (h) dependent temperature profile is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Large thermocapillary forces are observed along the plane of the liquid-liquid and liquid-gas interfaces due to this h-dependent temperature, which, in turn, is strongly influenced by the h-dependent laser light reflection and absorption. Consequently the dewetting is a result of the competition between thermocapillary and intermolecular forces. A linear analysis of the dewetting length scales established that the non-isothermal calculations better predict the experimental results as compared to the isothermal case within the bounding Hamaker coefficients. Subsequently, a computational non-linear dynamics study of the dewetting pathway was performed for Ag/Co and Co/Ag bilayer systems to predict the morphology evolution. We found that the systems evolve towards formation of different morphologies, including core-shell, embedded, or stacked nanostructure morphologies.


Operation Comics: The Story Continues, Bruce Kessler, Janet Tassell, Tressa Tullis Jul 2011

Operation Comics: The Story Continues, Bruce Kessler, Janet Tassell, Tressa Tullis

Mathematics Faculty Publications

During the 2008-2009 academic year, the author K. wrote three issues of Operation Comics, a comic book with embedded mathematics content appropriate for 4th through 6th grade students. Several printed comics were placed in Cumberland Trace Elementary in the Warren County School System in Bowling Green, Kentucky, US. The author Ta. was enlisted to measure the impact of the comics on the attitudes and motivation of the students using the comics. A preliminary report was given by K. at the 2009 Bridges Banff Conference, and the written report appeared in the proceedings. Since then, data has been collected on the …


Predictability Time Of Chaotic Cosmologies, John Max Wilson May 2011

Predictability Time Of Chaotic Cosmologies, John Max Wilson

Mahurin Honors College Capstone Experience/Thesis Projects

We examine the predictability time scales for a cosmological model from the Einstein field equations coupled to the Klein-Gordon equations for a spin zero scalar field with an interaction potential V(φ). The cosmological equations resulting from this coupling are nonlinear in the scale cosmic parameter and scalar field, thus exhibiting characteristics of chaos. The equations can be linearized in the neighborhood of equilibrium points and then diagonalized to yield its Lyapunov exponents. One e-folding time of the system is then found to estimate the predictability time. This time is compared to the Big Rip time theorized by Yurov, Moruno, and …


Generalized Bathtub Hazard Models For Binary-Transformed Climate Data, James Polcer May 2011

Generalized Bathtub Hazard Models For Binary-Transformed Climate Data, James Polcer

Masters Theses & Specialist Projects

In this study, we use a hazard-based modeling as an alternative statistical framework to time series methods as applied to climate data. Data collected from the Kentucky Mesonet will be used to study the distributional properties of the duration of high and low-energy wind events relative to an arbitrary threshold. Our objectiveswere to fit bathtub models proposed in literature, propose a generalized bathtub model, apply these models to Kentucky Mesonet data, and make recommendations as to feasibility of wind power generation. Using two different thresholds (1.8 and 10 mph respectively), results show that the Hjorth bathtub model consistently performed better …


Wavelet-Based Analysis Of Neutron-Induced Photon Spectral Data, Bruce Kessler, Alexander Barzilov, Phillip Womble Apr 2011

Wavelet-Based Analysis Of Neutron-Induced Photon Spectral Data, Bruce Kessler, Alexander Barzilov, Phillip Womble

Mathematics Faculty Publications

Neutron-based methods of non-destructive inter- rogation of objects for the purpose of their characterization are well-established techniques, employed in the field of bulk material analysis, contraband detection, unexploded ordnance, etc. The characteristic gamma rays produced in nuclear reactions initiated by neutrons in the volume of the irradiated object (inelastic neutron scattering, thermal neutron capture, and activation) are used for the elemental identification. In many real-world applications, an automated spectral analysis is needed, and many algorithms are used for that purpose. The Applied Physics Institute at Western Kentucky University has recently started to employ a mathematical spectrum analysis technique based on …


Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine Jan 2011

Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine

Mathematics Faculty Publications

The linear dispersion relation for longwave surface perturbations, as derived by Levine et al. Phys. Rev. B 75, 205312 (2007) is extended to include a smooth surface energy anisotropy function with a variable anisotropy strength (from weak to strong, such that sharp corners and slightly curved facets occur on the corresponding Wulff shape). Through detailed parametric studies it is shown that a combination of a wetting interaction and strong anisotropy, and even a wetting interaction alone results in complicated linear stability characteristics of strained and unstrained films.


Exact Controllability Of A Rayleigh Beam With A Single Boundary Control, Ahmet Ozkan Ozer, Scott Hansen Jan 2011

Exact Controllability Of A Rayleigh Beam With A Single Boundary Control, Ahmet Ozkan Ozer, Scott Hansen

Mathematics Faculty Publications

No abstract provided.


Operation Comics: The Story Continues, Bruce Kessler, Janet Tassell, Tressa Tullis Jan 2011

Operation Comics: The Story Continues, Bruce Kessler, Janet Tassell, Tressa Tullis

Mathematics Faculty Publications

During the 2008-2009 academic year, the author K. wrote three issues of Operation Comics, a comic book with embedded mathematics content appropriate for 4th through 6th grade students. Several printed comics were placed in Cumberland Trace Elementary in the Warren County School System in Bowling Green, Kentucky, US. The author Ta. was enlisted to measure the impact of the comics on the attitudes and motivation of the students using the comics. A preliminary report was given by K. at the 2009 Bridges Banff Conference, and the written report appeared in the proceedings. Since then, data has been collected on the …


Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu Tekalign, Margo Levine Jan 2011

Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu Tekalign, Margo Levine

Mathematics Faculty Publications

The linear dispersion relation for longwave surface perturbations, as derived by Levine et al. Phys. Rev. B 75, 205312 (2007) is extended to include a smooth surface energy anisotropy function with a variable anisotropy strength (from weak to strong, such that sharp corners and slightly curved facets occur on the corresponding Wulff shape). Through detailed parametric studies it is shown that a combination of a wetting interaction and strong anisotropy, and even a wetting interaction alone results in complicated linear stability characteristics of strained and unstrained films.


Modeling Diverse Physics Of Nanoparticle Self-Assembly In Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner Jan 2011

Modeling Diverse Physics Of Nanoparticle Self-Assembly In Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner

Mathematics Faculty Publications

Presents physics behind dewetting of thin liquid films and mathematical/computational modeling tools (Educational/Research presentation for senior physics majors).


Operation Comics: The Story Continues, Bruce Kessler, Janet Tassell, Tressa Tullis Jan 2011

Operation Comics: The Story Continues, Bruce Kessler, Janet Tassell, Tressa Tullis

Bruce Kessler

During the 2008-2009 academic year, the author K. wrote three issues of Operation Comics, a comic book with embedded mathematics content appropriate for 4th through 6th grade students. Several printed comics were placed in Cumberland Trace Elementary in the Warren County School System in Bowling Green, Kentucky, US. The author Ta. was enlisted to measure the impact of the comics on the attitudes and motivation of the students using the comics. A preliminary report was given by K. at the 2009 Bridges Banff Conference, and the written report appeared in the proceedings. Since then, data has been collected on the …


Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine Jan 2011

Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine

Mikhail Khenner

The linear dispersion relation for longwave surface perturbations, as derived by Levine et al. Phys. Rev. B 75, 205312 (2007) is extended to include a smooth surface energy anisotropy function with a variable anisotropy strength (from weak to strong, such that sharp corners and slightly curved facets occur on the corresponding Wulff shape). Through detailed parametric studies it is shown that a combination of a wetting interaction and strong anisotropy, and even a wetting interaction alone results in complicated linear stability characteristics of strained and unstrained films.


Modeling Diverse Physics Of Nanoparticle Self-Assembly In Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner Jan 2011

Modeling Diverse Physics Of Nanoparticle Self-Assembly In Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner

Mikhail Khenner

Presents physics behind dewetting of thin liquid films and mathematical/computational modeling tools (Educational/Research presentation for senior physics majors).