Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physical Sciences and Mathematics

Discrete Fractional Calculus And Its Applications To Tumor Growth, Sevgi Sengul May 2010

Discrete Fractional Calculus And Its Applications To Tumor Growth, Sevgi Sengul

Masters Theses & Specialist Projects

Almost every theory of mathematics has its discrete counterpart that makes it conceptually easier to understand and practically easier to use in the modeling process of real world problems. For instance, one can take the "difference" of any function, from 1st order up to the n-th order with discrete calculus. However, it is also possible to extend this theory by means of discrete fractional calculus and make n- any real number such that the ½-th order difference is well defined. This thesis is comprised of five chapters that demonstrate some basic definitions and properties of discrete fractional calculus …


An Algorithm To Generate Two-Dimensional Drawings Of Conway Algebraic Knots, Jen-Fu Tung May 2010

An Algorithm To Generate Two-Dimensional Drawings Of Conway Algebraic Knots, Jen-Fu Tung

Masters Theses & Specialist Projects

The problem of finding an efficient algorithm to create a two-dimensional embedding of a knot diagram is not an easy one. Typically, knots with a large number of crossings will not nicely generate two-dimensional drawings. This thesis presents an efficient algorithm to generate a knot and to create a nice two-dimensional embedding of the knot. For the purpose of this thesis a drawing is “nice” if the number of tangles in the diagram consisting of half-twists is minimal. More specifically, the algorithm generates prime, alternating Conway algebraic knots in O(n) time where n is the number of crossings …


Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner Mar 2010

Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner

Mathematics Faculty Publications

An introduction to mathematical modeling of ultrathin solid films and the role of such modeling in nanotechnologies: Educational presentation for senior physics majors


Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner Mar 2010

Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner

Mathematics Faculty Publications

An introduction to mathematical modeling of ultrathin solid films and the role of such modeling in nanotechnologies: Educational/Research presentation for senior physics majors


Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner Mar 2010

Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner

Mikhail Khenner

An introduction to mathematical modeling of ultrathin solid films and the role of such modeling in nanotechnologies: Educational/Research presentation for senior physics majors


Improved Automated Monitoring And New Analysis Algorithm For Circadean Phototaxis Rhythms In Chlamydomonas, Christa Gaskill, Jennifer Forbes-Stovall, Bruce Kessler, Mike Young, Claire A. Rinehart, Sigrid Jacobshagen Feb 2010

Improved Automated Monitoring And New Analysis Algorithm For Circadean Phototaxis Rhythms In Chlamydomonas, Christa Gaskill, Jennifer Forbes-Stovall, Bruce Kessler, Mike Young, Claire A. Rinehart, Sigrid Jacobshagen

Mathematics Faculty Publications

Automated monitoring of circadian rhythms is an efficient way of gaining insight into oscillation parameters like period and phase for the underlying pacemaker of the circadian clock. Measurement of the circadian rhythm of phototaxis (swimming towards light) exhibited by the green alga Chlamydomonas reinhardtii has been automated by directing a narrow and dim light beam through a culture at regular intervals and determining the decrease in light transmittance due to the accumulation of cells in the beam. In this study, the monitoring process was optimized by constructing a new computercontrolled measuring machine that limits the test beam to wavelengths reported …


Improved Automated Monitoring And New Analysis Algorithm For Circadean Phototaxis Rhythms In Chlamydomonas, Christa Gaskill, Jennifer Forbes-Stovall, Bruce Kessler, Mike Young, Claire A. Rinehart, Sigrid Jacobshagen Feb 2010

Improved Automated Monitoring And New Analysis Algorithm For Circadean Phototaxis Rhythms In Chlamydomonas, Christa Gaskill, Jennifer Forbes-Stovall, Bruce Kessler, Mike Young, Claire A. Rinehart, Sigrid Jacobshagen

Bruce Kessler

Automated monitoring of circadian rhythms is an efficient way of gaining insight into oscillation parameters like period and phase for the underlying pacemaker of the circadian clock. Measurement of the circadian rhythm of phototaxis (swimming towards light) exhibited by the green alga Chlamydomonas reinhardtii has been automated by directing a narrow and dim light beam through a culture at regular intervals and determining the decrease in light transmittance due to the accumulation of cells in the beam. In this study, the monitoring process was optimized by constructing a new computercontrolled measuring machine that limits the test beam to wavelengths reported …


Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev Jan 2010

Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev

Mathematics Faculty Publications

We study long-wave Marangoni convection in a layer heated from below. Using the scaling k=O Bi, where k is the wave number and Bi is the Biot number, we derive a set of amplitude equations. Analysis of this set shows presence of monotonic and oscillatory modes of instability. Oscillatory mode has not been previously found for such direction of heating. Studies of weakly nonlinear dynamics demonstrate that stable steady and oscillatory patterns can be found near the stability threshold.


Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev Jan 2010

Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev

Mathematics Faculty Publications

We study long-wave Marangoni convection in a layer heated from below. Using the scaling k=O Bi, where k is the wave number and Bi is the Biot number, we derive a set of amplitude equations. Analysis of this set shows presence of monotonic and oscillatory modes of instability. Oscillatory mode has not been previously found for such direction of heating. Studies of weakly nonlinear dynamics demonstrate that stable steady and oscillatory patterns can be found near the stability threshold.


Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev Jan 2010

Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev

Mikhail Khenner

We study long-wave Marangoni convection in a layer heated from below. Using the scaling k=OBi, where k is the wave number and Bi is the Biot number, we derive a set of amplitude equations. Analysis of this set shows presence of monotonic and oscillatory modes of instability. Oscillatory mode has not been previously found for such direction of heating. Studies of weakly nonlinear dynamics demonstrate that stable steady and oscillatory patterns can be found near the stability threshold.