Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

On The Quadratic Bundles Related To Hermitian Symmetric Spaces, Tihomir Valchev Mar 2013

On The Quadratic Bundles Related To Hermitian Symmetric Spaces, Tihomir Valchev

Articles

We develop the direct scattering problem for quadratic bundles associated to Hermitian symmetric spaces. We adapt the dressing method for quadratic bundles which allows us to find special solutions to multicomponent derivative Schrodinger equation for instance. The latter is an infinite dimensional Hamiltonian system possessing infinite number of integrals of motion. We demonstrate how one can derive them by block diagonalization of the corresponding Lax pair.


On Multicomponent Derivative Nonlinear Schrodinger Equation Related To Symmetric Spaces, Tihomir Valchev Jan 2013

On Multicomponent Derivative Nonlinear Schrodinger Equation Related To Symmetric Spaces, Tihomir Valchev

Conference papers

We study derivative nonlinear Schrodinger equations related to symmetric spaces of the type A.III. We discuss the spectral properties of the corresponding Lax operator and develop the direct scattering problem connected to it. By applying an appropriately chosen dressing factor we derive soliton solutions to the nonlinear equation. We find the integrals of motion by using the method of diagonalization of Lax pair.


Remarks On Quadratic Bundles Related To Hermitian Symmetric Spaces, Tihomir Valchev Jan 2013

Remarks On Quadratic Bundles Related To Hermitian Symmetric Spaces, Tihomir Valchev

Conference papers

We consider quadratic bundles related to Hermitian symmetric spaces of the type SU(m+n)/S(U(m)\times U(n)). We discuss the spectral properties of scattering operator, develop the direct scattering problem associated with it and stress on the effect of reduction on these. By applying a modification of Zakharov-Shabat's dressing procedure we demonstrate how one can obtain reflectionless potentials. That way one is able to generate soliton solutions to the nonlinear evolution equations belonging to the integrable hierarchy associated with quadratic bundles under study.


Particle Trajectories In Extreme Stokes Waves Over Inifinte Depth, Tony Lyons Jan 2013

Particle Trajectories In Extreme Stokes Waves Over Inifinte Depth, Tony Lyons

Articles

We investigate the velocity field of fluid particles in an extreme water wave over infinite depth. It is shown that the trajectories of the particles within the fluid and along the free surface do not form closed paths over the course of one period, but rather undergo a positive drift in the direction of wave propagation. In addition it is shown that the wave crest cannot form a stagnation point despite the velocity of the fluid being zero there.


The Lismullin Enclosure:A Designed Ritual Space, Frank Prendergast Jan 2013

The Lismullin Enclosure:A Designed Ritual Space, Frank Prendergast

Book/Book Chapter

The discovery in 2007 of a prehistoric post-built enclosure at Lismullin, Co. Meath, during archaeological investigations in advance of the construction of the M3 motorway is, arguably, the most significant Irish archaeological discovery of recent times. This appendix summarises a commissioned specialist report on the spatial and archaeoastronomical features of the enclosure.


Integrable Systems As Fluid Models With Physical Applications, Tony Lyons Jan 2013

Integrable Systems As Fluid Models With Physical Applications, Tony Lyons

Doctoral

In this thesis we begin with the development and analysis of hydrodynamical models as they arise in the theory of water waves and in the modelling of blood flow within arteries. Initially we derive three models of hydrodynamical relevance, namely the KdV equation, the two component Camassa-Holm equation and the Kaup-Boussinesq equation. We develop a model of blood flowing within an artery with elastic walls, and from the principles of Newtonian mechanics we derive the two-component Burger's equation as our first integrable model. We investigate the analytic properties of the system briefly, with the aim of demonstrating the phenomenon of …


G-Strands And Peakon Collisions On Diff(R), Darryl Holm, Rossen Ivanov Jan 2013

G-Strands And Peakon Collisions On Diff(R), Darryl Holm, Rossen Ivanov

Articles

A G-strand is a map g : R x R --> G for a Lie group G that follows from Hamilton's principle for a certain class of G-invariant Lagrangians. Some G-strands on finite-dimensional groups satisfy 1+1 space-time evolutionary equations that admit soliton solutions as completely integrable Hamiltonian systems. For example, the SO(3)-strand equations may be regarded physically as integrable dynamics for solitons on a continuous spin chain. Previous work has shown that G-strands for diffeomorphisms on the real line possess solutions with singular support (e.g. peakons). This paper studies collisions of such singular solutions of G-strands when G = Diff( …


On The Persistence Properties Of The Cross-Coupled Camassa-Holm System, David Henry, Darryl Holm, Rossen Ivanov Jan 2013

On The Persistence Properties Of The Cross-Coupled Camassa-Holm System, David Henry, Darryl Holm, Rossen Ivanov

Articles

In this paper we examine the evolution of solutions, that initially have compact support, of a recently-derived system of cross-coupled Camassa-Holm equations. The analytical methods which we employ provide a full picture for the persistence of compact support for the momenta. For solutions of the system itself, the answer is more convoluted, and we determine when the compactness of the support is lost, replaced instead by an exponential decay rate.