Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Physical Sciences and Mathematics

Electromagnetic Scattering Solutions For Digital Signal Processing, Jonathan Blackledge Nov 2009

Electromagnetic Scattering Solutions For Digital Signal Processing, Jonathan Blackledge

Other resources

Electromagnetic scattering theory is fundamental to understanding the interaction between electromagnetic waves and inhomogeneous dielectric materials. The theory unpins the engineering of electromagnetic imaging systems over a broad range of frequencies, from optics to radio and microwave imaging, for example. Developing accurate scattering models is particularly important in the field of image understanding and the interpretation of electromagnetic signals generated by scattering events. To this end there are a number of approaches that can be taken. For relatively simple geometric configurations, approximation methods are used to develop a transformation from the object plane (where scattering events take place) to the …


Self-Authentication Of Audio Signals By Chirp Coding, Jonathan Blackledge, Eugene Coyle Sep 2009

Self-Authentication Of Audio Signals By Chirp Coding, Jonathan Blackledge, Eugene Coyle

Conference papers

This paper discusses a new approach to ‘watermarking’ digital signals using linear frequency modulated or ‘chirp’ coding. The principles underlying this approach are based on the use of a matched filter to provide a reconstruction of a chirped code that is uniquely robust in the case of signals with very low signal-to-noise ratios. Chirp coding for authenticating data is generic in the sense that it can be used for a range of data types and applications (the authentication of speech and audio signals, for example). The theoretical and computational aspects of the matched filter and the properties of a chirp …


Covariant Relativistic Quantum Mechanics Analysis Of A Linearly Accelerated Scalar Particle, Karol Mcdonald May 2009

Covariant Relativistic Quantum Mechanics Analysis Of A Linearly Accelerated Scalar Particle, Karol Mcdonald

Doctoral

A covariant formalism of Relativistic Quantum Mechanics is demonstrated, through it's de- velopment and application. The Relativistic Case is shown to follow a similar structure to the established Non-Relativistic formalism. Reasons for preferring the new covariant formalism over the established method are presented. Solutions to the case of a scalar particle in a one-dimensional field are presented. The Relativistic Energy Eigenfunction is derived. Results are generated from initial Gaussian states via a Green's Function method. A Green's Function for the system is derived and applied. The solution to the Quantum System is shown to follow a scaled version of the …


Tight Lower Bound For The Sparse Travelling Salesman Problem, Fredrick Mtenzi May 2009

Tight Lower Bound For The Sparse Travelling Salesman Problem, Fredrick Mtenzi

Conference papers

The Sparse Travelling Salesman Problem (Sparse TSP) which is a variant of the classical Travelling Salesman Problem (TSP) is the problem of finding the shortest route of the salesman when visiting cities in a region making sure that each city is visited at least once and returning home at the end. In the Sparse TSP, the distance between cities may not obey the triangle inequality; this makes the use of algorithms and formulations designed for the TSP to require modifications in order to produce near-optimal results. A lower bound for optmisation problems gives us the quality guarantee of the near-optimal …


Poisson Structures Of Equations Associated With Groups Of Diffeomorphisms, Rossen Ivanov Jan 2009

Poisson Structures Of Equations Associated With Groups Of Diffeomorphisms, Rossen Ivanov

Conference papers

A class of equations describing the geodesic flow for a right-invariant metric on the group of diffeomorphisms of Rn is reviewed from the viewpoint of their Lie-Poisson structures. A subclass of these equations is analogous to the Euler equations in hydrodynamics (for n = 3), preserving the volume element of the domain of fluid flow. An example in n = 1 dimension is the Camassa-Holm equation, which is a geodesic flow equation on the group of diffeomorphisms, preserving the H1 metric.


Two Component Integrable Systems Modelling Shallow Water Waves, Rossen Ivanov Jan 2009

Two Component Integrable Systems Modelling Shallow Water Waves, Rossen Ivanov

Conference papers

Our aim is to describe the derivation of shallow water model equations for the constant vorticity case and to demonstrate how these equations can be related to two integrable systems: a two component integrable generalization of the Camassa-Holm equation and the Kaup - Boussinesq system.


A Covert Encryption Method For Applications In Electronic Data Interchange, Jonathan Blackledge, Dmitry Dubovitskiy Jan 2009

A Covert Encryption Method For Applications In Electronic Data Interchange, Jonathan Blackledge, Dmitry Dubovitskiy

Articles

A principal weakness of all encryption systems is that the output data can be ‘seen’ to be encrypted. In other words, encrypted data provides a ‘flag’ on the potential value of the information that has been encrypted. In this paper, we provide a new approach to ‘hiding’ encrypted data in a digital image.

In conventional (symmetric) encryption, the plaintext is usually represented as a binary stream and encrypted using an XOR type operation with a binary cipher. The algorithm used is ideally designed to: (i) generate a maximum entropy cipher so that there is no bias with regard to any …


Converging Flow Between Coaxial Cones, O. Hall, A. D. Gilbert, C. P. Hills Jan 2009

Converging Flow Between Coaxial Cones, O. Hall, A. D. Gilbert, C. P. Hills

Articles

Fluid flow governed by the Navier-Stokes equation is considered in a domain bounded by two cones with the same axis. In the first, 'non-parallel' case, the two cones have the same apex and different angles θ = α and β in spherical polar coordinates (r, θ, φ). In the second, 'parallel' case, the two cones have the same opening angle α, parallel walls separated by a gap h and apices separated by a distance h/sinα. Flows are driven by a source Q at the origin, the apex of the lower cone in the parallel case. The Stokes solution for the …


Nonaxisymmetric Stokes Flow Between Concentric Cones, O. Hall, C. P. Hills, A. D. Gilbert Jan 2009

Nonaxisymmetric Stokes Flow Between Concentric Cones, O. Hall, C. P. Hills, A. D. Gilbert

Articles

We study the fully three-dimensional Stokes flow within a geometry consisting of two infinite cones with coincident apices. The Stokes approximation is valid near the apex and we consider the dominant flow features as it is approached. The cones are assumed to be stationary and the flow to be driven by an arbitrary far-field disturbance. We express the flow quantities in terms of eigenfunction expansions and allow for the first time for nonaxisymmetric flow regimes through an azimuthal wave number. The eigenvalue problem is solved numerically for successive wave numbers. Both real and complex sequences of eigenvalues are found, their …


Equations Of The Camassa-Holm Hierarchy, Rossen Ivanov Jan 2009

Equations Of The Camassa-Holm Hierarchy, Rossen Ivanov

Articles

The squared eigenfunctions of the spectral problem associated with the CamassaHolm (CH) equation represent a complete basis of functions, which helps to describe the inverse scattering transform for the CH hierarchy as a generalized Fourier transform (GFT). All the fundamental properties of the CH equation, such as the integrals of motion, the description of the equations of the whole hierarchy, and their Hamiltonian structures, can be naturally expressed using the completeness relation and the recursion operator, whose eigenfunctions are the squared solutions. Using the GFT, we explicitly describe some members of the CH hierarchy, including integrable deformations for the CH …


Generalised Fourier Transform And Perturbations To Soliton Equations, Georgi Grahovski, Rossen Ivanov Jan 2009

Generalised Fourier Transform And Perturbations To Soliton Equations, Georgi Grahovski, Rossen Ivanov

Articles

A brief survey of the theory of soliton perturbations is presented. The focus is on the usefulness of the so-called Generalised Fourier Transform (GFT). This is a method that involves expansions over the complete basis of “squared solutions” of the spectral problem, associated to the soliton equation. The Inverse Scattering Transform for the corresponding hierarchy of soliton equations can be viewed as a GFT where the expansions of the solutions have generalised Fourier coefficients given by the scattering data. The GFT provides a natural setting for the analysis of small perturbations to an integrable equation: starting from a purely soliton …


Phase Transitions In Materials With Thermal Memory: The Case Of Unequal Conductivities, John Murrough Golden Jan 2009

Phase Transitions In Materials With Thermal Memory: The Case Of Unequal Conductivities, John Murrough Golden

Articles

A model for thermally induced phase transitions in materials with thermal memory was recently proposed, where the equations determining heatflow were assumed to be the same in both phases. In this work, the model is generalized to the case of phase dependent heatflow relations. The temperature (or coldness) gradient is decomposed into two parts, each zero on one phase and equal to the temperature (or coldness) gradient on the other. However, they vary smoothly over the transition zone. These are treated as separate independent quantities in the derivation of field equations from thermodynamics. Heat flux is given by an integral …


Two Component Integrable Systems Modelling Shallow Water Waves: The Constant Vorticity Case, Rossen Ivanov Jan 2009

Two Component Integrable Systems Modelling Shallow Water Waves: The Constant Vorticity Case, Rossen Ivanov

Articles

In this contribution we describe the role of several two-component integrable systems in the classical problem of shallow water waves. The starting point in our derivation is the Euler equation for an incompressible fluid, the equation of mass conservation, the simplest bottom and surface conditions and the constant vorticity condition. The approximate model equations are generated by introduction of suitable scalings and by truncating asymptotic expansions of the quantities to appropriate order. The so obtained equations can be related to three different integrable systems: a two component generalization of the Camassa-Holm equation, the Zakharov-Ito system and the Kaup-Boussinesq system. The …