Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Analytical Chemistry

Graduate Theses and Dissertations

Pure sciences

Articles 1 - 11 of 11

Full-Text Articles in Physical Sciences and Mathematics

The “Apparent” Diffusion Coefficient Of Electrons Through A Nafion Membrane, Marissa Kayle Reynolds May 2017

The “Apparent” Diffusion Coefficient Of Electrons Through A Nafion Membrane, Marissa Kayle Reynolds

Graduate Theses and Dissertations

The hydrogen/oxygen fuel cell is a greener, more efficient energy solution. However, there are many problems with the fuel cell including storage, infrastructure, cost, the oxygen reduction reaction, and the durability of the proton exchange membrane (PEM). The PEM is not only used as the electrolyte for the cell but also as a physical barrier between the anode and the cathode. The integrity of this membrane is crucial to the functioning of the fuel cell. This thesis will examine using ferricyanide as a probe molecule for diagnostic experiment of Nafion membrane integrity. Using hydrodynamic voltammetry with a rotating disk electrode …


Electrochemical Time Of Flight For Rapid And Direct Measurement Of Diffusion Coefficients, Jonathan C. Moldenhauer May 2017

Electrochemical Time Of Flight For Rapid And Direct Measurement Of Diffusion Coefficients, Jonathan C. Moldenhauer

Graduate Theses and Dissertations

The determination of diffusion coefficients is of fundamental importance to the understanding of electrochemistry and sensors. Developing a method by which diffusion coefficients of Red/ox active analytes can be determined quickly and elegantly, would be a great advancement over presently accepted methods. This dissertation reports the reviving electrochemical time of flight (ETOF), and developing a method that allows for empirical determination of diffusion coefficients from a single measurement. ETOF is a generate and detect experiment where the time an electrochemically generated species takes to transit a known distance is measured and related to the diffusion coefficient of the species. The …


An Electrochemical Characterization Of A Vanadium-Based Deoxydehydration Catalyst, Joel Eric Baker May 2017

An Electrochemical Characterization Of A Vanadium-Based Deoxydehydration Catalyst, Joel Eric Baker

Graduate Theses and Dissertations

Alternative methods for the conversion of polyols into olefins, be it for carbon storage or hydrocarbon fuel production, have become prevalent in today’s chemical industry. One process in particular, deoxydehydration (DODH) has been proven effective in taking sustainable biomass derivatives and converting them through the utilization of various homogenous metal catalysts. While this process may show productive yields and material conversion, it is hindered by the need of a sacrificial reductant. This makes a novel process economically unviable and relatively unused outside of scientific research. That fact begs the question: Can the process be improved? It is proposed here that …


Direct Attachment Of 4-Hydroxybenzoic Acid Polymers And Capture Agents To Flat Sheet And Microdialysis Membranes For Improved Mass Transport, Sarah Jane Phillips Dec 2016

Direct Attachment Of 4-Hydroxybenzoic Acid Polymers And Capture Agents To Flat Sheet And Microdialysis Membranes For Improved Mass Transport, Sarah Jane Phillips

Graduate Theses and Dissertations

Microdialysis (MD) sampling is a diffusion-based separation method which has the ability to sample any analyte that can diffuse across the semi-permeable membrane. However one challenge for MD is that for soluble proteins greater than 10 kDa, the relative recovery (RR) using a 100 kDa MD probe is between 1-5%.1 There are two major barriers that lead to these low recovery values - nonspecific adsorption (NSA) and poor solute mass transport. To overcome these two barriers, the modification of PES-based MD membranes has been initiated by laccase. Previous researchers have used laccase to modify PES flat sheet and hollow fiber …


Development Of Electrochemical Sensors Suitable For In Vivo Detection For Neurotransmitters, Mengjia Hu May 2016

Development Of Electrochemical Sensors Suitable For In Vivo Detection For Neurotransmitters, Mengjia Hu

Graduate Theses and Dissertations

The electrochemical method of redox cycling was exploited to achieve new discoveries in neurotransmitter detection and to advance its suitability toward in vivo use. Redox cycling has advantages in signal amplification, selectivity of species based on their electrochemical reaction mechanisms, and limited or no background subtraction. Distinction of dopamine from norepinephrine in a mixture with an electrochemical method at unmodified electrodes was demonstrated for the first time in vitro. This ability resulted from a series of fundamental studies of redox cycling behavior of the catecholamines (dopamine, norepinephrine and epinephrine) using different electrode configurations. Taking advantage of the ECC’ mechanism associated …


In Vitro Microdialysis Sampling Collection Of Volatile Organic Compounds (Voc's), Dodecafluoropentane (Ddfp) And Isoflurane, Valerie Shannon Mckinney Jul 2015

In Vitro Microdialysis Sampling Collection Of Volatile Organic Compounds (Voc's), Dodecafluoropentane (Ddfp) And Isoflurane, Valerie Shannon Mckinney

Graduate Theses and Dissertations

Death by stroke occurs every four minutes to human beings. Strokes cause necrosis within the tissue of the brain due to deprivation of oxygen. Perfluorocarbons have the ability to transport oxygen to tissue and in return decrease cell death. Dodecafluoropentane (DDFP) is a volatile fluorocarbon and collection in vivo can be a challenge since this compound evaporates at room temperature. There is currently not an efficient collection method in vivo for compounds that are volatile. Without a method to collect DDFP it is impossible to be approved for clinical use since exact concentrations of the drug within the body will …


Fundamental Studies Of Magnetoconvective Forces And Density Gradients In A Microfluidic Environment, Adam James Kreidermacher Jul 2015

Fundamental Studies Of Magnetoconvective Forces And Density Gradients In A Microfluidic Environment, Adam James Kreidermacher

Graduate Theses and Dissertations

Magnetoconvection is a promising phenomenon for developing new electrochemical-based microfluidic flow devices with unique capabilities, such as easily switching flow direction and adjusting flow speeds and flow patterns as well as avoiding bubble formation. In order to develop these devices it is necessary to study the underlying forces. Four contributions toward fluid flow were considered. The first and foremost is the magnetohydrodynamic force, which is the magnetic component of the Lorentz force and governed by the right hand rule. It generates the majority of the convention, and is the most well-known. The second is the gravitational force, which causes convection …


Microfluidics Guided By Redox-Magnetohydrodynamics (Mhd) For Lab-On-A-Chip Applications, Vishal Sahore Dec 2013

Microfluidics Guided By Redox-Magnetohydrodynamics (Mhd) For Lab-On-A-Chip Applications, Vishal Sahore

Graduate Theses and Dissertations

Unique microfluidic control actuated by simply turning off and on microfabricated electrodes in a small-volume system was investigated for lab-on-a-chip applications. This was accomplished using a relatively new pumping technique of redox-magnetohydrodynamics (MHD), which as shown in this dissertation generated the important microfluidic features of flat flow profile and fluid circulation. MHD is driven by the body force, FB = j × B, which is the magnetic part of the Lorentz force equation, and its direction is given by the right hand rule. The ionic current density, j, was generated in an equimolar solution of potassium ferri/ferro cyanide by applying …


Optimization Of Sample Preparation In Matrix-Assisted Laser Desorption/Ionization (Maldi) Mass Spectrometry Of Macromolecules, Evgenia Akhmetova Aug 2013

Optimization Of Sample Preparation In Matrix-Assisted Laser Desorption/Ionization (Maldi) Mass Spectrometry Of Macromolecules, Evgenia Akhmetova

Graduate Theses and Dissertations

New method for the matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) and Fourier transform mass spectrometry (MALDI-FTMS) analysis of low molecular weight polyvinyl acetate (PVAc) was developed and then applied to the characterization of commercially available chewing gum. The optimization of MALDI analysis of PVAc was achieved by investigating the influence of sample preparation variables such as the choice of solvent and choice of matrix-analyte ratio. It was demonstrated that the use of ethyl acetate as a solvent and 2,5-Dihydroxybenzoic acid as a matrix yielded the highest signal intensity for the pure polymer sample. The application of TOF technique did not …


Visualizing The Spatial Localization Of Active Matrix Metalloproteinases (Mmps) Using Maldi Imaging Ms, Sasirekha Muruganantham Dec 2011

Visualizing The Spatial Localization Of Active Matrix Metalloproteinases (Mmps) Using Maldi Imaging Ms, Sasirekha Muruganantham

Graduate Theses and Dissertations

Biomaterial implantation induces the foreign body response (FBR). Development of longer-term implants relies on the thorough understanding of the FBR. The progression of the FBR is regulated by a number of biomolecules including cytokines, chemokines, and matrix metalloproteinases (MMPs). The nature of the FBR requires the spatial and temporal regulation of these mediators. MMPs are an extremely large and diverse group of enzymes that play key roles in regulating the FBR. Precise spatiotemporal regulation of MMPs defines their proteolytic activities. The aim of this project is to develop a new bioanalytical method to visualize the localization of active MMPs at …


Dynamics And Catalytic Resolution Of Selected Chiral Organolithiums, Timothy Kum Beng Dec 2011

Dynamics And Catalytic Resolution Of Selected Chiral Organolithiums, Timothy Kum Beng

Graduate Theses and Dissertations

One of the most important developments of the last decade has been the emergence of new methods to dynamically resolve racemic organolithiums using stoichiometric amounts of the chiral ligand. When this concept is implemented successfully, it obviates the need for covalently attached chiral auxiliary based methods, asymmetric deprotonation, and asymmetric synthesis of a precursor stannane as ways to access enantioenriched organolithium compounds for use in asymmetric synthesis. Since certain electrophiles consume the chiral ligand, it is desirable to render this process catalytic in the chiral ligand.

As part of a larger study on the amenability of chiral organolithiums to a …