Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Development Of An F-Element Separation Chemistry Using Solid Electrolytes, Kristian Guy Myhre Dec 2016

Development Of An F-Element Separation Chemistry Using Solid Electrolytes, Kristian Guy Myhre

Doctoral Dissertations

The f‒elements (lanthanides and actinides) have numerous applications and are critically important to many industries, including the energy, security, and medical industries. One of the barriers to increased use and availability of the f‒elements is the difficulty in separating them from each other due to their similar chemistries. This is especially true of the trivalent f‒elements (lanthanides and minor actinides). The development of separation techniques that maximize the differences in the physicochemical properties of the f‒elements is therefore an important area of research. For these reasons, an effort was undertaken to explore the use of solid …


Novel Analytical Methods Combining Non-Denaturing Chromatography And Mass Spectrometry To Study Biopolymer Structure And Interactions, Khaja Muneeruddin Jul 2016

Novel Analytical Methods Combining Non-Denaturing Chromatography And Mass Spectrometry To Study Biopolymer Structure And Interactions, Khaja Muneeruddin

Doctoral Dissertations

Biotherapeutics, an emerging class of medicines containing biopolymers (e.g., proteins, peptide, and polysaccharides) have been developed for a variety of indications including cancer, autoimmune, genetic, and blood diseases. Among these biopolymers protein therapeutics have been the rapidly growing segment in the pharmaceutical industry. This trend combined with the complexity of proteins has necessitated the development of powerful and robust analytical methods to study their structure and interactions with physiological partners. Mass spectrometry (MS) has become an indispensable tool to analyze various attributes of protein drugs such as profiling of intact mass, amino acid sequencing, and post translational modifications (PTMs). In …


Novel Methods And Sensors For The Analysis Of Trace Chemicals With Potential Environmental Applications, Samuel Mason Rosolina May 2016

Novel Methods And Sensors For The Analysis Of Trace Chemicals With Potential Environmental Applications, Samuel Mason Rosolina

Doctoral Dissertations

The work in this dissertation focuses on the detection and analysis of trace chemicals in biological and environmental samples. Methods for the electrochemical detection of heavy metals Cd(II) [cadmium] and Pb(II) [lead], and the catalytic metal Pd(II) [palladium] in pharmaceutical ingredients have been optimized without the necessity of sample pretreatment. The metals can be analyzed simultaneously as well as individually, and the study includes the first known instance of the use of anodic stripping voltammetry (ASV) to detect metals in dimethyl sulfoxide (DMSO) solutions. Another method, based on ASV, has been optimized and evaluated for the purpose of mercury(II) analysis …


Development Of Novel Analytical Methods With The Aim Of Forensic Analyte Detection Using Ultra-Thin Layer Chromatography, Surface Enhanced Raman Spectroscopy, And Magneto-Elastic Wire Sensing, Nichole Ann Crane May 2016

Development Of Novel Analytical Methods With The Aim Of Forensic Analyte Detection Using Ultra-Thin Layer Chromatography, Surface Enhanced Raman Spectroscopy, And Magneto-Elastic Wire Sensing, Nichole Ann Crane

Doctoral Dissertations

The purpose of this dissertation is to develop analytical methods that aid in the detection of forensic analytes. Forensic analytes require methods with increased sensitivity and low limit of detection capabilities. Improvements in separation techniques, surface enhanced Raman spectroscopic techniques, and wire-less gas sensing can each assist in the detection of trace evidence.

When surface enhanced Raman is coupled with thin-layer chromatography a mixture of compounds can be separated and transferred to a metal substrate to be detected using Raman spectroscopy. Surface enhanced Raman scattering enhances the Raman signal intensity by placing a metal substrate in close proximity to an …


A Characterization Study On Catalyst Layers In Proton Exchange Membrane Fuel Cells, Luyue Li May 2016

A Characterization Study On Catalyst Layers In Proton Exchange Membrane Fuel Cells, Luyue Li

Doctoral Dissertations

This thesis describes the work for the catalyst layer (CL) characterization study of proton exchange membranes (PEM) for fuel cells. In particular, both the structure and performance of catalyst layers with alternative ionomers were studied. Structure wise, the morphology, surface area and pore size distribution studies were accomplished with scanning electron microscopy (SEM), transmission electron microscope (TEM) and nitrogen adsorption processed through Brunauer–Emmett–Teller (BET) and Barrett-Joyner-Halenda (BJH) theory. Water uptake isotherms of the CLs have been developed under well controlled relative humidity (RH) levels. The performance characterization focuses on polarization study, catalyst layer proton conductivity measurement and estimation of the …


The Application Of Hydrogen/Deuterium Exchange And Covalent Labeling Coupled With Mass Spectrometry To Examine Protein Structure, Nicholas B. Borotto Mar 2016

The Application Of Hydrogen/Deuterium Exchange And Covalent Labeling Coupled With Mass Spectrometry To Examine Protein Structure, Nicholas B. Borotto

Doctoral Dissertations

Thorough insight into a protein’s structure is necessary to understand how it functions and what goes wrong when it malfunctions. The structure of proteins, however, is not easily analyzed. The analysis must take place under a narrow range of conditions or risk perturbing the very structure being probed. Furthermore, the wide diversity in size and chemistry possible in proteins significantly complicates this analysis. Despite this numerous methods have been developed in order to analyze protein structure. In this work, we demonstrate that mass spectrometry (MS)-based techniques are capable of characterizing the structure of particularly challenging proteins. This is done through …


Single Particle-Inductively Coupled Plasma-Mass Spectrometry Technology Development For Metallic Nanoparticle Characterization In Complex Matrices, Yongbo Dan Jan 2016

Single Particle-Inductively Coupled Plasma-Mass Spectrometry Technology Development For Metallic Nanoparticle Characterization In Complex Matrices, Yongbo Dan

Doctoral Dissertations

"As the rapid growing of nanotechnology, the release of engineered nanoparticles (ENPs) into the environment is inevitable. After entering the real environment, ENPs tend to react with different components of the ecosystem (e.g. water, soil, air, plants) and make their characterization difficult. Analyzing ENPs in these complex matrices still remains as a grand challenge. ENPs characterization is normally the first step of risk assessment. Current analytical techniques have shown some limitations in revealing the unique characteristics of ENPs in complex matrices and reliable analytical techniques are in urgent need. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) is an emerging …