Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Physical Sciences and Mathematics

A Study Of Decision Analysis Methods In Aerospace Technology Assessments, Sharon Monica Jones Jul 2009

A Study Of Decision Analysis Methods In Aerospace Technology Assessments, Sharon Monica Jones

Engineering Management & Systems Engineering Theses & Dissertations

Managers of aerospace technology programs and projects are faced with the challenge of making technology portfolio decisions under conditions of limited data, rapidly changing macro level factors and organizational uncertainties. To help make these technology investment decisions, some aerospace managers and analysts have used techniques from the field of decision analysis. In addition, there have been a limited number of research studies of real decision problems.

This dissertation presents the results of a non-experimental examination of the use of decision analysis methods for the assessment of aerospace technology portfolios. A web-based survey instrument was developed based on the results of …


Store And Forward Routing For Sparse Pico-Satellite Sensor Networks With Data-Mules, Trevor Joseph Koritza Jun 2009

Store And Forward Routing For Sparse Pico-Satellite Sensor Networks With Data-Mules, Trevor Joseph Koritza

Master's Theses

Satellites are playing an increasingly important role in collecting scientific information, providing communication services, and revolutionizing navigation. Until recently satellites were large and very expensive, creating a high barrier to entry that only large corporations and government agencies could overcome. In the past few years the CubeSat project at California Polytechnic University in San Luis Obispo (Cal Poly) has worked to refine the design and launching of small, lightweight, and less expensive satellites called pico-satellites, opening space up to a wider audience. Now that Cal Poly has the launch logistics and hardware under control, a new problem has arisen. These …


Turn Constrained Path Planning Problems, Victor M. Roman May 2009

Turn Constrained Path Planning Problems, Victor M. Roman

UNLV Theses, Dissertations, Professional Papers, and Capstones

We consider the problem of constructing multiple disjoint paths connecting a source point s to a target point t in a geometric graph. We require that the paths do not have any sharp turn angles. We present a review of turn constrained path planning algorithms and also algorithms for constructing disjoint paths. We then combine these techniques and present an O(nlogn) time algorithm for constructing a pair of edge disjoint turn constrained paths connecting two nodes in a planar geometric graph. We also consider the development of a turn constrained shortest path map in the presence of …


Characterization Of Microwave Cavity Discharges In A Supersonic Flow, Dareth Janette Drake Apr 2009

Characterization Of Microwave Cavity Discharges In A Supersonic Flow, Dareth Janette Drake

Physics Theses & Dissertations

A partially ionized gas is referred to as either a plasma or a discharge depending on the degree of ionization. The term discharge is usually applied to a weakly ionized gas, i.e. mostly neutrals, where as a plasma usually has a larger degree of ionization. To characterize a discharge the plasma parameters, such as the rotational temperature, vibrational temperature, and electron density, must be determined. Detailed characterization of supersonic flowing discharges is important to many applications in aerospace and aerodynamics. One application is the use of plasma-assisted hydrogen combustion devices to aid in supersonic combustion. In conditions close to the …


Cooperative Unmanned Aerial Surveillance Control System Architecture, Theodore T. Diamond, Adam L. Rutherford, Jonathan B. Taylor Mar 2009

Cooperative Unmanned Aerial Surveillance Control System Architecture, Theodore T. Diamond, Adam L. Rutherford, Jonathan B. Taylor

Theses and Dissertations

Intelligence, surveillance and reconnaissance (ISR) is a high-demand Department of Defense mission performed by unmanned aircraft systems (UASs) at the tactical and theater levels. Coordinating UASs through cooperative control offers the advantages of persistence, distributed and adaptable sensor coverage, and reduced revisit time on points of interest. The purpose of this thesis is to apply systems engineering principles to the problem of developing a flexible, common control system for cooperative UAS surveillance at the tactical level. The AFIT team developed a concept of operations (CONOPS) encompassing various users and surveillance tasks. The team then used the scenarios in the CONOPS …


Waypoint Generation Based On Sensor Aimpoint, Shannon M. Farrell Mar 2009

Waypoint Generation Based On Sensor Aimpoint, Shannon M. Farrell

Theses and Dissertations

Secretary of Defense Robert M. Gates has emphasized a need for a greater number of intelligence, surveillance, and reconnaissance (ISR) assets to support combatant commanders and military operations globally. Unmanned systems, especially MAVs, used as ISR platforms provide the ability to maintain covertness during missions and help reduce the risk to human life. This research develops waypoint generation algorithms required to keep a point of interest (POI) in the field of view (FOV) of a fixed sensor on a micro air vehicle (MAV) in the presence of a constant wind.
Fixed sensors, while cheaper and less prone to mechanical failure …


Hyperspectral Imaging Of A Turbine Engine Exhaust Plume To Determine Radiance, Temperature, And Concentration Spatial Distributions, Spencer J. Bowen Mar 2009

Hyperspectral Imaging Of A Turbine Engine Exhaust Plume To Determine Radiance, Temperature, And Concentration Spatial Distributions, Spencer J. Bowen

Theses and Dissertations

The usefulness of imaging Fourier transform spectroscopy (IFTS) when looking at a rapidly varying turbine engine exhaust scene was explored by characterizing the scene change artifacts (SCAs) present in the plume and the effect they have on the calibrated spectra using the Telops, Inc.-manufactured Field-portable Imaging Radiometric Spectrometer Technology, Midwave Extended (FIRST-MWE). It was determined that IFTS technology can be applied to the problem of a rapidly varying turbine engine exhaust plume due to the zero mean, stochastic nature of the SCAs, through the use of temporal averaging. The FIRST-MWE produced radiometrically calibrated hyperspectral datacubes, with calibration uncertainty of 35% …


Probabilistic Estimation Of Rare Random Collisions In 3-Space, Timothy Holzmann Mar 2009

Probabilistic Estimation Of Rare Random Collisions In 3-Space, Timothy Holzmann

Theses and Dissertations

A study of risk assessment for artillery fire randomly colliding with fixed wing aircraft is presented. The research lends itself to a general study of collision models. Current models of object collisions fall under one of three categories: the historical model, the gas particle model, and the satellite model. These three vary in data requirements and mathematical representation of the impact event. The gas particle model is selected for its flexibility and robust estimation. However, current mathematical development in the literature does not include certain spatial and dynamic components necessary for a general encounter (collision) model. These are derived in …


Predicting Solar Protons: A Statistical Approach, Jonathan C. Spaulding Mar 2009

Predicting Solar Protons: A Statistical Approach, Jonathan C. Spaulding

Theses and Dissertations

A small fraction of solar flares are accompanied by high energy (>10 MeV) protons. These events can cause degradation or failure of satellite systems and can be harmful to humans in space or in high altitude flight. For risk management purposes, the Air Force is interested in predicting these events. Several algorithms exist to do this operationally, but none predict when these events will occur with much accuracy. Here, we analyzed 3610 M1 and greater flares including 106 with proton events from the GOES sensors from 1 Jan 1986 to 31 Dec 2004 to produce new results, including a …


Architecting Human Operator Trust In Automation To Improve System Effectiveness In Multiple Unmanned Aerial Vehicles (Uav), Eric A. Cring, Adam G. Lenfestey Mar 2009

Architecting Human Operator Trust In Automation To Improve System Effectiveness In Multiple Unmanned Aerial Vehicles (Uav), Eric A. Cring, Adam G. Lenfestey

Theses and Dissertations

Current Unmanned Aerial System (UAS) designs require multiple operators for each vehicle, partly due to imperfect automation matched with the complex operational environment. This study examines the effectiveness of future UAS automation by explicitly addressing the human/machine trust relationship during system architecting. A pedigreed engineering model of trust between human and machine was developed and applied to a laboratory-developed micro-UAS for Special Operations. This unprecedented investigation answered three primary questions. Can previous research be used to create a useful trust model for systems engineering? How can trust be considered explicitly within the DoD Architecture Framework? Can the utility of architecting …


Using Agent-Based Modeling To Evaluate Uas Behaviors In A Target-Rich Environment, Joseph A. Van Kuiken Mar 2009

Using Agent-Based Modeling To Evaluate Uas Behaviors In A Target-Rich Environment, Joseph A. Van Kuiken

Theses and Dissertations

The trade-off between accuracy and speed is a re-occurring dilemma in many facets of military performance evaluation. This is an especially important issue in the world of ISR. One of the most progressive areas of ISR capabilities has been the utilization of Unmanned Aircraft Systems (UAS). Many people believe that the future of UAS lies in smaller vehicles flying in swarms. We use the agent-based System Effectiveness and Analysis Simulation (SEAS) to create a simulation environment where different configurations of UAS vehicles can process targets and provide output that allows us to gain insight into the benefits and drawbacks of …


Using Predictive Rendering As A Vision-Aided Technique For Autonomous Aerial Refueling, Adam D. Weaver Mar 2009

Using Predictive Rendering As A Vision-Aided Technique For Autonomous Aerial Refueling, Adam D. Weaver

Theses and Dissertations

This research effort seeks to characterize a vision-aided approach for an Unmanned Aerial System (UAS) to autonomously determine relative position to another aircraft in a formation, specifically to address the autonomous aerial refueling problem. A system consisting of a monocular digital camera coupled with inertial sensors onboard the UAS is analyzed for feasibility of using this vision-aided approach. A three-dimensional rendering of the tanker aircraft is used to generate predicted images of the tanker as seen by the receiver aircraft. A rigorous error model is developed to model the relative dynamics between an INS-equipped receiver and the tanker aircraft. A …


Semi-Automated Frame Transformations Using Fft Analysis On 2-D Images, Francisco Javier Osuna Jan 2009

Semi-Automated Frame Transformations Using Fft Analysis On 2-D Images, Francisco Javier Osuna

Open Access Theses & Dissertations

Cassini entered Saturn's orbit on July 1, 2004 beginning a four-year exploration of Saturn. In 2008 the mission was extended, and Cassini continues to collect and transmit images and data collected during its mission. In order to accurately interpret images, it is necessary to know the location and orientation of the camera provided the field of view when the image was collected. While the mission managers provide initial estimates of this orientation, scientific analysis requires better estimates than the initial data provided. Navigation is a process for improving the estimation of the true camera pointing vector as determined by features …