Open Access. Powered by Scholars. Published by Universities.®

Rehabilitation and Therapy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Rehabilitation and Therapy

The Stroke-Related Effects Of Hip Flexion Fatigue On Over Ground Walking, Megan M. Rybar, Eric R. Walker, Henry Kuhnen, Daniel R. Ouellette, Reivian Berrios, Sandra K. Hunter, Allison Hyngstrom Apr 2014

The Stroke-Related Effects Of Hip Flexion Fatigue On Over Ground Walking, Megan M. Rybar, Eric R. Walker, Henry Kuhnen, Daniel R. Ouellette, Reivian Berrios, Sandra K. Hunter, Allison Hyngstrom

Exercise Science Faculty Research and Publications

Individuals post stroke often rely more on hip flexors for limb advancement during walking due to distal weakness but the effects of muscle fatigue in this group is not known. The purpose of this study was to quantify how stroke affects the influence of hip flexor fatigue on over ground walking kinematics and performance and muscle activation. Ten individuals with chronic stroke and 10 without stroke (controls) participated in the study. Maximal walking speed, walking distance, muscle electromyograms (EMG), and lower extremity joint kinematics were compared before and after dynamic, submaximal fatiguing contractions of the hip flexors (30% maximal load) …


Sex Differences In Human Fatigability: Mechanisms And Insight To Physiological Responses, Sandra K. Hunter Apr 2014

Sex Differences In Human Fatigability: Mechanisms And Insight To Physiological Responses, Sandra K. Hunter

Exercise Science Faculty Research and Publications

Sex-related differences in physiology and anatomy are responsible for profound differences in neuromuscular performance and fatigability between men and women. Women are usually less fatigable than men for similar intensity isometric fatiguing contractions. This sex difference in fatigability, however, is task specific because different neuromuscular sites will be stressed when the requirements of the task are altered, and the stress on these sites can differ for men and women. Task variables that can alter the sex difference in fatigability include the type, intensity and speed of contraction, the muscle group assessed and the environmental conditions. Physiological mechanisms that are responsible …