Open Access. Powered by Scholars. Published by Universities.®

Rehabilitation and Therapy Commons

Open Access. Powered by Scholars. Published by Universities.®

Life Sciences

University of Kentucky

Regeneration

Articles 1 - 2 of 2

Full-Text Articles in Rehabilitation and Therapy

Fusion And Beyond: Satellite Cell Contributions To Loading-Induced Skeletal Muscle Adaptation, Kevin A. Murach, Christopher S. Fry, Esther E. Dupont-Versteegden, John J. Mccarthy, Charlotte A. Peterson Sep 2021

Fusion And Beyond: Satellite Cell Contributions To Loading-Induced Skeletal Muscle Adaptation, Kevin A. Murach, Christopher S. Fry, Esther E. Dupont-Versteegden, John J. Mccarthy, Charlotte A. Peterson

Center for Muscle Biology Faculty Publications

Satellite cells support adult skeletal muscle fiber adaptations to loading in numerous ways. The fusion of satellite cells, driven by cell-autonomous and/or extrinsic factors, contributes new myonuclei to muscle fibers, associates with load-induced hypertrophy, and may support focal membrane damage repair and long-term myonuclear transcriptional output. Recent studies have also revealed that satellite cells communicate within their niche to mediate muscle remodeling in response to resistance exercise, regulating the activity of numerous cell types through various mechanisms such as secretory signaling and cell–cell contact. Muscular adaptation to resistance and endurance activity can be initiated and sustained for a period of …


Differential Requirement For Satellite Cells During Overload-Induced Muscle Hypertrophy In Growing Versus Mature Mice, Kevin A. Murach, Sarah H. White, Yuan Wen, Angel Ho, Esther E. Dupont-Versteegden, John J. Mccarthy, Charlotte A. Peterson Jul 2017

Differential Requirement For Satellite Cells During Overload-Induced Muscle Hypertrophy In Growing Versus Mature Mice, Kevin A. Murach, Sarah H. White, Yuan Wen, Angel Ho, Esther E. Dupont-Versteegden, John J. Mccarthy, Charlotte A. Peterson

Physical Therapy Faculty Publications

Background: Pax7+ satellite cells are required for skeletal muscle fiber growth during post-natal development in mice. Satellite cell-mediated myonuclear accretion also appears to persist into early adulthood. Given the important role of satellite cells during muscle development, we hypothesized that the necessity of satellite cells for adaptation to an imposed hypertrophic stimulus depends on maturational age.

Methods: Pax7CreER-R26RDTA mice were treated for 5 days with vehicle (satellite cell-replete, SC+) or tamoxifen (satellite cell-depleted, SC-) at 2 months (young) and 4 months (mature) of age. Following a 2-week washout, mice were subjected to sham surgery or 10 day …