Open Access. Powered by Scholars. Published by Universities.®

Animal Experimentation and Research

Pharmacy Faculty Articles and Research

Biologic TNF-α inhibitor

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Other Pharmacy and Pharmaceutical Sciences

Modulation Of Hippocampal Protein Expression By A Brain Penetrant Biologic Tnf-Α Inhibitor In The 3xtg Alzheimer’S Disease Mice, Nataraj Jagadeesan, G. Chuli Roules, Devaraj V. Chandrashekar, Joshua Yang, Sanjana Kolluru, Rachita K. Sumbria Mar 2024

Modulation Of Hippocampal Protein Expression By A Brain Penetrant Biologic Tnf-Α Inhibitor In The 3xtg Alzheimer’S Disease Mice, Nataraj Jagadeesan, G. Chuli Roules, Devaraj V. Chandrashekar, Joshua Yang, Sanjana Kolluru, Rachita K. Sumbria

Pharmacy Faculty Articles and Research

Background

Biologic TNF-α inhibitors (bTNFIs) can block cerebral TNF-α in Alzheimer’s disease (AD) if these macromolecules can cross the blood–brain barrier (BBB). Thus, a model bTNFI, the extracellular domain of type II TNF-α receptor (TNFR), which can bind to and sequester TNF-α, was fused with a mouse transferrin receptor antibody (TfRMAb) to enable brain delivery via BBB TfR-mediated transcytosis. Previously, we found TfRMAb-TNFR to be protective in a mouse model of amyloidosis (APP/PS1) and tauopathy (PS19), and herein we investigated its effects in mice that combine both amyloidosis and tauopathy (3xTg-AD).

Methods

Eight-month-old female 3xTg-AD mice were injected intraperitoneally with …


Biologic Tnf-Α Inhibitors Reduce Microgliosis, Neuronal Loss, And Tau Phosphorylation In A Transgenic Mouse Model Of Tauopathy, Weijun Ou, Joshua Yang, Juste Simanauskaite, Matthew Choi, Demi M. Castellanos, Rudy Chang, Jiahong Sun, Nataraj Jagadeesan, Karen D. Parfitt, David H. Cribbs, Rachita K. Sumbria Dec 2021

Biologic Tnf-Α Inhibitors Reduce Microgliosis, Neuronal Loss, And Tau Phosphorylation In A Transgenic Mouse Model Of Tauopathy, Weijun Ou, Joshua Yang, Juste Simanauskaite, Matthew Choi, Demi M. Castellanos, Rudy Chang, Jiahong Sun, Nataraj Jagadeesan, Karen D. Parfitt, David H. Cribbs, Rachita K. Sumbria

Pharmacy Faculty Articles and Research

Background

Tumor necrosis factor-α (TNF-α) plays a central role in Alzheimer’s disease (AD) pathology, making biologic TNF-α inhibitors (TNFIs), including etanercept, viable therapeutics for AD. The protective effects of biologic TNFIs on AD hallmark pathology (Aβ deposition and tau pathology) have been demonstrated. However, the effects of biologic TNFIs on Aβ-independent tau pathology have not been reported. Existing biologic TNFIs do not cross the blood–brain barrier (BBB), therefore we engineered a BBB-penetrating biologic TNFI by fusing the extracellular domain of the type-II human TNF-α receptor (TNFR) to a transferrin receptor antibody (TfRMAb) that ferries the TNFR into the brain via …