Open Access. Powered by Scholars. Published by Universities.®

Pharmacy and Pharmaceutical Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 25 of 25

Full-Text Articles in Pharmacy and Pharmaceutical Sciences

Direct Nose To The Brain Nanomedicine Delivery Presents A Formidable Challenge, Robert A. Yokel Dec 2021

Direct Nose To The Brain Nanomedicine Delivery Presents A Formidable Challenge, Robert A. Yokel

Pharmaceutical Sciences Faculty Publications

This advanced review describes the anatomical and physiological barriers and mechanisms impacting nanomedicine translocation from the nasal cavity directly to the brain. There are significant physiological and anatomical differences in the nasal cavity, olfactory area, and airflow reaching the olfactory epithelium between humans and experimentally studied species that should be considered when extrapolating experimental results to humans. Mucus, transporters, and tight junction proteins present barriers to material translocation across the olfactory epithelium. Uptake of nanoparticles through the olfactory mucosa and translocation to the brain can be intracellular via cranial nerves (intraneuronal) or other cells of the olfactory epithelium, or extracellular …


The Preparation Temperature Influences The Physicochemical Nature And Activity Of Nanoceria, Robert A. Yokel, Wendel Wohlleben, Johannes Georg Keller, Matthew L. Hancock, Jason M. Unrine, D. Allan Butterfield, Eric A. Grulke Jun 2021

The Preparation Temperature Influences The Physicochemical Nature And Activity Of Nanoceria, Robert A. Yokel, Wendel Wohlleben, Johannes Georg Keller, Matthew L. Hancock, Jason M. Unrine, D. Allan Butterfield, Eric A. Grulke

Pharmaceutical Sciences Faculty Publications

Cerium oxide nanoparticles, so-called nanoceria, are engineered nanomaterials prepared by many methods that result in products with varying physicochemical properties and applications. Those used industrially are often calcined, an example is NM-212. Other nanoceria have beneficial pharmaceutical properties and are often prepared by solvothermal synthesis. Solvothermally synthesized nanoceria dissolve in acidic environments, accelerated by carboxylic acids. NM-212 dissolution has been reported to be minimal. To gain insight into the role of high-temperature exposure on nanoceria dissolution, product susceptibility to carboxylic acid-accelerated dissolution, and its effect on biological and catalytic properties of nanoceria, the dissolution of NM-212, a solvothermally synthesized nanoceria …


Copper Oxide Nanoparticle Diameter Mediates Serum-Sensitive Toxicity In Beas-2b Cells, Angie S. Morris, Brittany E. Givens, Aaron Silva, Aliasger K. Salem Feb 2021

Copper Oxide Nanoparticle Diameter Mediates Serum-Sensitive Toxicity In Beas-2b Cells, Angie S. Morris, Brittany E. Givens, Aaron Silva, Aliasger K. Salem

Chemical and Materials Engineering Faculty Publications

Copper oxide (CuO) nanoparticles (NPs) are abundant in manufacturing processes, but they are an airway irritant. In vitro pulmonary toxicity of CuO NPs has been modeled using cell lines such as human bronchial epithelial cell line BEAS-2B. In 2D in vitro culture, BEAS-2B undergoes squamous differentiation due to the presence of serum. Differentiation is part of the repair process of lung cells in vivo that helps to preserve the epithelial lining of the respiratory tract. Herein, the effects of serum on the hydrodynamic diameter, cellular viability, cellular differentiation, and cellular uptake of 5 and 35 nm CuO NPs are investigated, …


Rna Nanoparticles And Method Of Use Thereof, Peixuan Guo, Hui Li, Wei Luo Nov 2020

Rna Nanoparticles And Method Of Use Thereof, Peixuan Guo, Hui Li, Wei Luo

Pharmaceutical Sciences Faculty Patents

The presently-disclosed subject matter relates to an artificial RNA nanostructure and method of use thereof. In particular, the presently-disclosed subject matter relates to RNA nanoparticles and RNA dendrimers, and methods of disease diagnosis and treatments using the RNA nanostructure and RNA dendrimers.


Nanoceria Distribution And Effects Are Mouse-Strain Dependent, Robert A. Yokel, Michael T. Tseng, D. Allan Butterfield, Matthew L. Hancock, Eric A. Grulke, Jason M. Unrine, Arnold J. Stromberg, Alan K. Dozier, Uschi M. Graham Aug 2020

Nanoceria Distribution And Effects Are Mouse-Strain Dependent, Robert A. Yokel, Michael T. Tseng, D. Allan Butterfield, Matthew L. Hancock, Eric A. Grulke, Jason M. Unrine, Arnold J. Stromberg, Alan K. Dozier, Uschi M. Graham

Pharmaceutical Sciences Faculty Publications

Prior studies showed nanoparticle clearance was different in C57BL/6 versus BALB/c mice, strains prone to Th1 and Th2 immune responses, respectively. Objective: Assess nanoceria (cerium oxide, CeO2 nanoparticle) uptake time course and organ distribution, cellular and oxidative stress, and bioprocessing as a function of mouse strain. Methods: C57BL/6 and BALB/c female mice were i.p. injected with 10 mg/kg nanoceria or vehicle and terminated 0.5 to 24 h later. Organs were collected for cerium analysis; light and electron microscopy with elemental mapping; and protein carbonyl, IL-1β, and caspase-1 determination. Results: Peripheral organ cerium significantly increased, generally more …


Rna Nanoparticles For Brain Tumor Treatment, Peixuan Guo, Carlo M. Croce, Tae Jin Lee, Farzin Haque, Hui Li Mar 2020

Rna Nanoparticles For Brain Tumor Treatment, Peixuan Guo, Carlo M. Croce, Tae Jin Lee, Farzin Haque, Hui Li

Pharmaceutical Sciences Faculty Patents

The presently-disclosed subject matter relates to an artificial RNA nanostructure molecule and method to treat brain tumor in a subject. More particularly, the presently disclosed subject matter relates to a RNA nanostructure containing a multiple branched RNA nanoparticle, a brain tumor targeting module, and an effective amount of a therapeutic agent. Further, the presently disclosed subject matter relates to a method of using the RNA nanostructure composition to treat brain tumor in a subject having or at risk of having brain tumor.


Mechanisms And Thermodynamics Of The Influence Of Solution-State Interactions Between Hpmc And Surfactants On Mixed Adsorption Onto Model Nanoparticles, Salin Gupta Patel Jan 2019

Mechanisms And Thermodynamics Of The Influence Of Solution-State Interactions Between Hpmc And Surfactants On Mixed Adsorption Onto Model Nanoparticles, Salin Gupta Patel

Theses and Dissertations--Pharmacy

Nanoparticulate drug delivery systems (NDDS) such as nanocrystals, nanosuspensions, solid-lipid nanoparticles often formulated for the bioavailability enhancement of poorly soluble drug candidates are stabilized by a mixture of excipients including surfactants and polymers. Most literature studies have focused on the interaction of excipients with the NDDS surfaces while ignoring the interaction of excipients in solution and the extent to which the solution-state interactions influence the affinity and capacity of adsorption. Mechanisms by which excipients stabilize NDDS and how this information can be utilized by formulators a priori to make a rational selection of excipients is not known.

The goals of …


Morphometric Characteristics And Time To Hatch As Efficacious Indicators For Potential Nanotoxicity Assay In Zebrafish, Seyed-Mohammadreza Samaee, Nafiseh Manteghi, Robert A. Yokel, Mohammad Reza Mohajeri-Tehrani Dec 2018

Morphometric Characteristics And Time To Hatch As Efficacious Indicators For Potential Nanotoxicity Assay In Zebrafish, Seyed-Mohammadreza Samaee, Nafiseh Manteghi, Robert A. Yokel, Mohammad Reza Mohajeri-Tehrani

Pharmaceutical Sciences Faculty Publications

Although the effects of nano-sized titania (nTiO2) on hatching events (change in hatching time and total hatching) in zebrafish have been reported, additional consequences of nTiO2 exposure (i.e., the effects of nTiO2-induced changes in hatching events and morphometric parameters on embryo-larvae development and survivability) have not been reported. To address this knowledge gap, embryos 4 h postfertilization were exposed to nTiO2 (0, 0.01, 10, and 1000 μg/mL) for 220 h. Hatching rate (58, 82, and 106 h postexposure [hpe]), survival rate (8 times from 34 to 202 hpe), and 21 morphometric characteristics (8 times …


Physiologically Based Pharmacokinetic Modeling Of Nanoceria Systemic Distribution In Rats Suggests Dose- And Route-Dependent Biokinetics, Ulrika Carlander, Tshepo Paulsen Moto, Anteneh Assefa Desalegn, Robert A. Yokel, Gunnar Johanson May 2018

Physiologically Based Pharmacokinetic Modeling Of Nanoceria Systemic Distribution In Rats Suggests Dose- And Route-Dependent Biokinetics, Ulrika Carlander, Tshepo Paulsen Moto, Anteneh Assefa Desalegn, Robert A. Yokel, Gunnar Johanson

Pharmaceutical Sciences Faculty Publications

Background: Cerium dioxide nanoparticles (nanoceria) are increasingly being used in a variety of products as catalysts, coatings, and polishing agents. Furthermore, their antioxidant properties make nanoceria potential candidates for biomedical applications. To predict and avoid toxicity, information about their biokinetics is essential. A useful tool to explore such associations between exposure and internal target dose is physiologically based pharmacokinetic (PBPK) modeling. The aim of this study was to test the appropriateness of our previously published PBPK model developed for intravenous (IV) administration when applied to various sizes of nanoceria and to exposure routes relevant for humans.

Methods: Experimental biokinetic data …


Analytical High-Resolution Electron Microscopy Reveals Organ-Specific Nanoceria Bioprocessing, Uschi M. Graham, Robert A. Yokel, Alan K. Dozier, Lawrence Drummy, Krishnamurthy Mahalingam, Michael T. Tseng, Eileen Birch, Joseph Fernback Jan 2018

Analytical High-Resolution Electron Microscopy Reveals Organ-Specific Nanoceria Bioprocessing, Uschi M. Graham, Robert A. Yokel, Alan K. Dozier, Lawrence Drummy, Krishnamurthy Mahalingam, Michael T. Tseng, Eileen Birch, Joseph Fernback

Pharmaceutical Sciences Faculty Publications

This is the first utilization of advanced analytical electron microscopy methods, including high-resolution transmission electron microscopy, high-angle annular dark field scanning transmission electron microscopy, electron energy loss spectroscopy, and energy-dispersive X-ray spectroscopy mapping to characterize the organ-specific bioprocessing of a relatively inert nanomaterial (nanoceria). Liver and spleen samples from rats given a single intravenous infusion of nanoceria were obtained after prolonged (90 days) in vivo exposure. These advanced analytical electron microscopy methods were applied to elucidate the organ-specific cellular and subcellular fate of nanoceria after its uptake. Nanoceria is bioprocessed differently in the spleen than in the liver.


Polymer Nanoassemblies With Hydrophobic Pendant Groups In The Core Induce False Positive Sirna Transfection In Luciferase Reporter Assays, Steven Rheiner, Derek Alexander Reichel, Piotr G. Rychahou, Tadahide Izumi, Hsin-Sheng Yang, Younsoo Bae Aug 2017

Polymer Nanoassemblies With Hydrophobic Pendant Groups In The Core Induce False Positive Sirna Transfection In Luciferase Reporter Assays, Steven Rheiner, Derek Alexander Reichel, Piotr G. Rychahou, Tadahide Izumi, Hsin-Sheng Yang, Younsoo Bae

Pharmaceutical Sciences Faculty Publications

Poly(ethylene glycol)-conjugated polyethylenimine (PEG-PEI) is a widely studied cationic polymer used to develop non-viral vectors for siRNA therapy of genetic disorders including cancer. Cell lines stably expressing luciferase reporter protein typically evaluate the transfection efficacy of siRNA/PEG-PEI complexes, however recent findings revealed that PEG-PEI can reduce luciferase expression independent of siRNA. This study elucidates a cause of the false positive effect in luciferase assays by using polymer nanoassemblies (PNAs) made from PEG, PEI, poly-(L-lysine) (PLL), palmitate (PAL), and deoxycholate (DOC): PEG-PEI (2P), PEG-PEI-PAL (3P), PEG-PLL (2P′), PEG-PLL-PAL (3P′), and PEG-PEI-DOC (2PD). In vitro transfection and western blot assays of luciferase …


From Dose To Response: In Vivo Nanoparticle Processing And Potential Toxicity, Uschi M. Graham, Gary Jacobs, Robert A. Yokel, Burtron H. Davis, Alan K. Dozier, M. Eileen Birch, Michael T. Tseng, Günter Oberdörster, Alison Elder, Lisa Delouise Jan 2017

From Dose To Response: In Vivo Nanoparticle Processing And Potential Toxicity, Uschi M. Graham, Gary Jacobs, Robert A. Yokel, Burtron H. Davis, Alan K. Dozier, M. Eileen Birch, Michael T. Tseng, Günter Oberdörster, Alison Elder, Lisa Delouise

Pharmaceutical Sciences Faculty Publications

Adverse human health impacts due to occupational and environmental exposures to manufactured nanoparticles are of concern and pose a potential threat to the continued industrial use and integration of nanomaterials into commercial products. This chapter addresses the inter-relationship between dose and response and will elucidate on how the dynamic chemical and physical transformation and breakdown of the nanoparticles at the cellular and subcellular levels can lead to the in vivo formation of new reaction products. The dose-response relationship is complicated by the continuous physicochemical transformations in the nanoparticles induced by the dynamics of the biological system, where dose, bio-processing, and …


Development Of Diverse Size And Shape Rna Nanoparticles And Investigation Of Their Physicochemical Properties For Optimized Drug Delivery, Daniel L. Jasinski Jan 2017

Development Of Diverse Size And Shape Rna Nanoparticles And Investigation Of Their Physicochemical Properties For Optimized Drug Delivery, Daniel L. Jasinski

Theses and Dissertations--Pharmacy

RNA nanotechnology is an emerging field that holds great promise for advancing drug delivery and materials science. Recently, RNA nanoparticles have seen increased use as an in vivo delivery system. RNA was once thought to have little potential for in vivo use due to biological and thermodynamic stability issues. However, these issues have been solved by: (1) Finding of a thermodynamically stable three-way junction (3WJ) motif; (2) Chemical modifications to RNA confer enzymatic stability in vivo; and (3) the finding that RNA nanoparticles exhibit low immunogenicity in vivo.

In vivo biodistribution and pharmacokinetics are affected by the physicochemical …


Systematic Review Of Potential Health Risks Posed By Pharmaceutical, Occupational And Consumer Exposures To Metallic And Nanoscale Aluminum, Aluminum Oxides, Aluminum Hydroxide And Its Soluble Salts, Calvin C. Willhite, Nataliya A. Karyakina, Robert A. Yokel, Nagarajkumar Yenugadhati, Thomas M. Wisniewski, Ian M. F. Arnold, Franco Momoli, Daniel Krewski Oct 2014

Systematic Review Of Potential Health Risks Posed By Pharmaceutical, Occupational And Consumer Exposures To Metallic And Nanoscale Aluminum, Aluminum Oxides, Aluminum Hydroxide And Its Soluble Salts, Calvin C. Willhite, Nataliya A. Karyakina, Robert A. Yokel, Nagarajkumar Yenugadhati, Thomas M. Wisniewski, Ian M. F. Arnold, Franco Momoli, Daniel Krewski

Pharmaceutical Sciences Faculty Publications

Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007).

Challenges encountered in carrying out the present review reflected the experimental use of different physical …


In Vivo Processing Of Ceria Nanoparticles Inside Liver: Impact On Free-Radical Scavenging Activity And Oxidative Stress, Uschi M. Graham, Michael T. Tseng, Jacek B. Jasinski, Robert A. Yokel, Jason M. Unrine, Burtron H. Davis, Alan K. Dozier, Sarita S. Hardas, Rukhsana Sultana, Eric A. Grulke, D. Allan Butterfield Aug 2014

In Vivo Processing Of Ceria Nanoparticles Inside Liver: Impact On Free-Radical Scavenging Activity And Oxidative Stress, Uschi M. Graham, Michael T. Tseng, Jacek B. Jasinski, Robert A. Yokel, Jason M. Unrine, Burtron H. Davis, Alan K. Dozier, Sarita S. Hardas, Rukhsana Sultana, Eric A. Grulke, D. Allan Butterfield

Pharmaceutical Sciences Faculty Publications

The cytotoxicity of ceria ultimately lies in its electronic structure, which is defined by the crystal structure, composition, and size. Despite previous studies focused on ceria uptake, distribution, biopersistance, and cellular effects, little is known about its chemical and structural stability and solubility once sequestered inside the liver. Mechanisms will be presented that elucidate the in vivo transformation in the liver. In vivo processed ceria reveals a particle-size effect towards the formation of ultrafines, which represent a second generation of ceria. A measurable change in the valence reduction of the second-generation ceria can be linked to an increased free-radical scavenging …


Rat Hippocampal Responses Up To 90 Days After A Single Nanoceria Dose Extends A Hierarchical Oxidative Stress Model For Nanoparticle Toxicity, Sarita S. Hardas, Rukhsana Sultana, Govind Warrier, Mo Dan, Peng Wu, Eric A. Grulke, Michael T. Tseng, Jason M. Unrine, Uschi M. Graham, Robert A. Yokel, D. Allan Butterfield Jan 2014

Rat Hippocampal Responses Up To 90 Days After A Single Nanoceria Dose Extends A Hierarchical Oxidative Stress Model For Nanoparticle Toxicity, Sarita S. Hardas, Rukhsana Sultana, Govind Warrier, Mo Dan, Peng Wu, Eric A. Grulke, Michael T. Tseng, Jason M. Unrine, Uschi M. Graham, Robert A. Yokel, D. Allan Butterfield

Chemistry Faculty Publications

Ceria engineered nanomaterials (ENMs) have very promising commercial and therapeutic applications. Few reports address the effects of nanoceria in intact mammals, let alone long term exposure. This knowledge is essential to understand potential therapeutic applications of nanoceria in relation to its hazard assessment. The current study elucidates oxidative stress responses in the rat hippocampus 1 and 20 h, and 1, 7, 30 and 90 days following a single systemic infusion of 30 nm nanoceria. The results are incorporated into a previously described hierarchical oxidative stress (HOS) model. During the 1-20 h period, increases of the GSSG: GSH ratio and cytoprotective …


Programmable Folding Of Fusion Rna In Vivo And In Vitro Driven By Prna 3wj Motif Of Phi29 Dna Packaging Motor, Dan Shu, Emil F. Khisamutdinov, Le Zhang, Peixuan Guo Jan 2014

Programmable Folding Of Fusion Rna In Vivo And In Vitro Driven By Prna 3wj Motif Of Phi29 Dna Packaging Motor, Dan Shu, Emil F. Khisamutdinov, Le Zhang, Peixuan Guo

Pharmaceutical Sciences Faculty Publications

Misfolding and associated loss of function are common problems in constructing fusion RNA complexes due to changes in energy landscape and the nearest-neighbor principle. Here we report the incorporation and application of the pRNA-3WJ motif of the phi29 DNA packaging motor into fusion RNA with controllable and predictable folding. The motif included three discontinuous ∼18 nucleotide (nt) fragments, displayed a distinct low folding energy (Shu D et al., Nature Nanotechnology, 2011, 6:658–667), and folded spontaneously into a leading core that enabled the correct folding of other functionalities fused to the RNA complex. Three individual fragments dispersed at any …


Binding, Transcytosis And Biodistribution Of Anti-Pecam-1 Iron Oxide Nanoparticles For Brain-Targeted Delivery, Mo Dan, David B. Cochran, Robert A. Yokel, Thomas D. Dziubla Nov 2013

Binding, Transcytosis And Biodistribution Of Anti-Pecam-1 Iron Oxide Nanoparticles For Brain-Targeted Delivery, Mo Dan, David B. Cochran, Robert A. Yokel, Thomas D. Dziubla

Pharmaceutical Sciences Faculty Publications

OBJECTIVE: Characterize the flux of platelet-endothelial cell adhesion molecule (PECAM-1) antibody-coated superparamagnetic iron oxide nanoparticles (IONPs) across the blood-brain barrier (BBB) and its biodistribution in vitro and in vivo.

METHODS: Anti-PECAM-1 IONPs and IgG IONPs were prepared and characterized in house. The binding affinity of these nanoparticles was investigated using human cortical microvascular endothelial cells (hCMEC/D3). Flux assays were performed using a hCMEC/D3 BBB model. To test their immunospecificity index and biodistribution, nanoparticles were given to Sprague Dawley rats by intra-carotid infusion. The capillary depletion method was used to elucidate their distribution between the BBB and brain parenchyma.

RESULTS: Anti-PECAM-1 …


Block Copolymer Cross-Linked Nanoassemblies Improve Particle Stability And Biocompatibility Of Superparamagnetic Iron Oxide Nanoparticles, Mo Dan, Daniel F. Scott, Peter A. Hardy, Robert J. Wydra, J. Zach Hilt, Robert A. Yokel, Younsoo Bae Feb 2013

Block Copolymer Cross-Linked Nanoassemblies Improve Particle Stability And Biocompatibility Of Superparamagnetic Iron Oxide Nanoparticles, Mo Dan, Daniel F. Scott, Peter A. Hardy, Robert J. Wydra, J. Zach Hilt, Robert A. Yokel, Younsoo Bae

Pharmaceutical Sciences Faculty Publications

PURPOSE: To develop cross-linked nanoassemblies (CNAs) as carriers for superparamagnetic iron oxide nanoparticles (IONPs).

METHODS: Ferric and ferrous ions were co-precipitated inside core-shell type nanoparticles prepared by cross-linking poly(ethylene glycol)-poly(aspartate) block copolymers to prepare CNAs entrapping Fe(3)O(4) IONPs (CNA-IONPs). Particle stability and biocompatibility of CNA-IONPs were characterized in comparison to citrate-coated Fe(3)O(4) IONPs (Citrate-IONPs).

RESULTS: CNA-IONPs, approximately 30 nm in diameter, showed no precipitation in water, PBS, or a cell culture medium after 3 or 30 h, at 22, 37, and 43°C, and 1, 2.5, and 5 mg/mL, whereas Citrate-IONPs agglomerated rapidly (> 400 nm) in all …


Design, Physicochemical Characterization, And Optimization Of Organic Solution Advanced Spray-Dried Inhalable Dipalmitoylphosphatidylcholine (Dppc) And Dipalmitoylphosphatidylethanolamine Poly(Ethylene Glycol) (Dppe-Peg) Microparticles And Nanoparticles For Targeted Respiratory Nanomedicine Delivery As Dry Powder Inhalation Aerosols, Samantha Ann Meenach, Frederick G. Vogt, Kimberly W. Anderson, J. Zach Hilt, Ronald C. Mcgarry, Heidi M. Mansour Jan 2013

Design, Physicochemical Characterization, And Optimization Of Organic Solution Advanced Spray-Dried Inhalable Dipalmitoylphosphatidylcholine (Dppc) And Dipalmitoylphosphatidylethanolamine Poly(Ethylene Glycol) (Dppe-Peg) Microparticles And Nanoparticles For Targeted Respiratory Nanomedicine Delivery As Dry Powder Inhalation Aerosols, Samantha Ann Meenach, Frederick G. Vogt, Kimberly W. Anderson, J. Zach Hilt, Ronald C. Mcgarry, Heidi M. Mansour

Pharmaceutical Sciences Faculty Publications

Novel advanced spray-dried and co-spray-dried inhalable lung surfactant-mimic phospholipid and poly(ethylene glycol) (PEG)ylated lipopolymers as microparticulate/nanoparticulate dry powders of biodegradable biocompatible lipopolymers were rationally formulated via an organic solution advanced spray-drying process in closed mode using various phospholipid formulations and rationally chosen spray-drying pump rates. Ratios of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine PEG (DPPE-PEG) with varying PEG lengths were mixed in a dilute methanol solution. Scanning electron microscopy images showed the smooth, spherical particle morphology of the inhalable particles. The size of the particles was statistically analyzed using the scanning electron micrographs and SigmaScan® software and were determined to be 600 …


Rat Brain Pro-Oxidant Effects Of Peripherally Administered 5 Nm Ceria 30 Days After Exposure, Sarita S. Hardas, Rukhsana Sultana, Govind Warrier, Mo Dan, Rebecca L. Florence, Peng Wu, Eric A. Grulke, Michael T. Tseng, Jason M. Unrine, Uschi M. Graham, Robert A. Yokel, D. Allan Butterfield Oct 2012

Rat Brain Pro-Oxidant Effects Of Peripherally Administered 5 Nm Ceria 30 Days After Exposure, Sarita S. Hardas, Rukhsana Sultana, Govind Warrier, Mo Dan, Rebecca L. Florence, Peng Wu, Eric A. Grulke, Michael T. Tseng, Jason M. Unrine, Uschi M. Graham, Robert A. Yokel, D. Allan Butterfield

Chemistry Faculty Publications

The objective of this study was to determine the residual pro-or anti-oxidant effects in rat brain 30 days after systemic administration of a 5 nm citrate-stabilized ceria dispersion. A ∼4% aqueous ceria dispersion was iv-infused (0 or 85 mg/kg) into rats which were terminated 30 days later. Ceria concentration, localization, and chemical speciation in the brain was assessed by inductively coupled plasma mass spectrometry (ICP-MS), light and electron microscopy (EM), and electron energy loss spectroscopy (EELS), respectively. Pro- or anti-oxidant effects were evaluated by measuring levels of protein carbonyls (PC), 3-nitrotyrosine (3NT), and protein-bound-4-hydroxy-2-trans-nonenal (HNE) in the hippocampus, cortex, and …


Brain Microvascular Endothelial Cell Association And Distribution Of A 5 Nm Ceria Engineered Nanomaterial, Mo Dan, Michael T. Tseng, Peng Wu, Jason M. Unrine, Eric A. Grulke, Robert A. Yokel Jul 2012

Brain Microvascular Endothelial Cell Association And Distribution Of A 5 Nm Ceria Engineered Nanomaterial, Mo Dan, Michael T. Tseng, Peng Wu, Jason M. Unrine, Eric A. Grulke, Robert A. Yokel

Pharmaceutical Sciences Faculty Publications

PURPOSE: Ceria engineered nanomaterials (ENMs) have current commercial applications and both neuroprotective and toxic effects. Our hypothesis is that ceria ENMs can associate with brain capillary cells and/or cross the blood-brain barrier.

METHODS: An aqueous dispersion of ∼5 nm ceria ENM was synthesized and characterized in house. Its uptake space in the Sprague Dawley rat brain was determined using the in situ brain perfusion technique at 15 and 20 mL/minute flow rates; 30, 100, and 500 μg/mL ceria perfused for 120 seconds at 20 mL/minute; and 30 μg/mL perfused for 20, 60, and 120 seconds at 20 mL/minute. The capillary …


Ceria-Engineered Nanomaterial Distribution In, And Clearance From, Blood: Size Matters, Mo Dan, Peng Wu, Eric A. Grulke, Uschi M. Graham, Jason M. Unrine, Robert A. Yokel Jan 2012

Ceria-Engineered Nanomaterial Distribution In, And Clearance From, Blood: Size Matters, Mo Dan, Peng Wu, Eric A. Grulke, Uschi M. Graham, Jason M. Unrine, Robert A. Yokel

Pharmaceutical Sciences Faculty Publications

AIMS: Characterize different sized ceria-engineered nanomaterial (ENM) distribution in, and clearance from, blood (compared to the cerium ion) following intravenous infusion.

MATERIALS & METHODS: Cerium (Ce) was quantified in whole blood, serum and clot (the formed elements) up to 720 h.

RESULTS: Traditional pharmacokinetic modeling showed best fit for 5 nm ceria ENM and the cerium ion. Ceria ENMs larger than 5 nm were rapidly cleared from blood. After initially declining, whole blood 15 and 30 nm ceria increased (results that have not been well-described by traditional pharmacokinetic modeling). The cerium ion and 5 and 55 nm ceria did not …


Nanoparticulate Formulations Of Mithramycin Analogs For Enhanced Cytotoxicity, Daniel Scott, Jürgen Rohr, Younsoo Bae Nov 2011

Nanoparticulate Formulations Of Mithramycin Analogs For Enhanced Cytotoxicity, Daniel Scott, Jürgen Rohr, Younsoo Bae

Pharmaceutical Sciences Faculty Publications

Mithramycin (MTM), a natural product of soil bacteria from the Streptomyces genus, displays potent anticancer activity but has been limited clinically by severe side effects and toxicities. Engineering of the MTM biosynthetic pathway has produced the 3-side-chain-modified analogs MTM SK (SK) and MTM SDK (SDK), which have exhibited increased anticancer activity and improved therapeutic index. However, these analogs still suffer from low bioavailability, short plasma retention time, and low tumor accumulation. In an effort to aid with these shortcomings, two nanoparticulate formulations, poly(ethylene glycol)-poly(aspartate hydrazide) self-assembled and cross-linked micelles, were investigated with regard to the ability to load and pH …


Compositions Comprising Human Immunodeficiency Virus Tat Adsorbed To The Surface Of Anionic Nanoparticles, Russell J. Mumper, Jerold Woodward, Zhengrong Cui, Avindra Nath Sep 2009

Compositions Comprising Human Immunodeficiency Virus Tat Adsorbed To The Surface Of Anionic Nanoparticles, Russell J. Mumper, Jerold Woodward, Zhengrong Cui, Avindra Nath

Pharmaceutical Sciences Faculty Patents

Non-denatured, recombinant human immunodeficiency virus (HIV) Tat that is free of bacterial RNA and endotoxin is employed in an anti-HIV vaccine. A process of producing the recombinant Tat protein includes steps for removing bacterial RNA from the recombinant Tat and for removing endotoxin from the recombinant Tat protein. A Tat-adsorbed nanoparticle formulation and method of making the same. A method of vaccinating against and/or treating HIV infection comprises administering to a subject in need of such vaccination or treatment an immune-response inducing effective amount of the recombinant Tat protein.