Open Access. Powered by Scholars. Published by Universities.®

Pharmacy and Pharmaceutical Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Pharmacy and Pharmaceutical Sciences

Role Of Medial Prefrontal Cortical Group Ii Metabotropic Glutamate Receptor In The Development Of Cocaine Sensitization, Xiaohu Xie Dec 2007

Role Of Medial Prefrontal Cortical Group Ii Metabotropic Glutamate Receptor In The Development Of Cocaine Sensitization, Xiaohu Xie

Theses and Dissertations (ETD)

The current studies examined the role of medial prefrontal cortical (mPFC) group II metabotropic glutamate receptors (mGluR2/3) in the development of cocaine sensitization. Initial studies demonstrated that intra-mPFC injection of the mGluR2/3 receptor agonist, APDC, dose-dependently reduced acute behavioral response to cocaine (0.015-15 nmol/side with significant effects starting at 1.5nmol/side). The effects of APDC were prevented by intra-mPFC co-injections of an mGluR2/3 antagonist, LY341495 (1.5 nmol/side). Repeated intra-mPFC APDC (1.5 nmol/side) injections also prevented the initiation of behavioral and neurochemical sensitization, which is defined as enhanced nucleus accumbens (NAc) dopamine response to cocaine. Once sensitization was …


Molecular Targets For Antiepileptic Drug Development, Brian S. Meldrum, Michael A. Rogawski Dec 2006

Molecular Targets For Antiepileptic Drug Development, Brian S. Meldrum, Michael A. Rogawski

Michael A. Rogawski

This review considers how recent advances in the physiology of ion channels and other potential molecular targets, in conjunction with new information on the genetics of idiopathic epilepsies, can be applied to the search for improved antiepileptic drugs (AEDs). Marketed AEDs predominantly target voltage-gated cation channels (the alpha subunits of voltage-gated Na+ channels and also T-type voltage-gated Ca2+ channels) or influence GABA-mediated inhibition. Recently, alpha2-delta voltage-gated Ca2+ channel subunits and the SV2A synaptic vesicle protein have been recognized as likely targets. Genetic studies of familial idiopathic epilepsies have identified numerous genes associated with diverse epilepsy syndromes, including genes encoding Na+ …