Open Access. Powered by Scholars. Published by Universities.®

Pharmacy and Pharmaceutical Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Pharmacy and Pharmaceutical Sciences

Inhibition Of Abcb1 (Mdr1) Expression By An Sirna Nanoparticulate Delivery System To Overcome Drug Resistance In Osteosarcoma, Michiro Susa, Arun Iyer, Keinosuke Ryu, Edwin Choi, Francis Hornicek, Henry Mankin, Lara Milane, Mansoor Amiji, Zhenfeng Duan Apr 2012

Inhibition Of Abcb1 (Mdr1) Expression By An Sirna Nanoparticulate Delivery System To Overcome Drug Resistance In Osteosarcoma, Michiro Susa, Arun Iyer, Keinosuke Ryu, Edwin Choi, Francis Hornicek, Henry Mankin, Lara Milane, Mansoor Amiji, Zhenfeng Duan

Arun Iyer

Background: The use of neo-adjuvant chemotherapy in treating osteosarcoma has improved patients’ average 5 year survival rate from 20% to 70% in the past 30 years. However, for patients who progress after chemotherapy, its effectiveness diminishes due to the emergence of multi-drug resistance (MDR) after prolonged therapy. Methodology/Principal Findings: In order to overcome both the dose-limiting side effects of conventional chemotherapeutic agents and the therapeutic failure resulting from MDR, we designed and evaluated a novel drug delivery system for MDR1 siRNA delivery. Novel biocompatible, lipid-modified dextran-based polymeric nanoparticles were used as the platform for MDR1 siRNA delivery; and the efficacy …


Fluorescence-Guided Optical Coherence Tomography Imaging For Colon Cancer Screening: A Preliminary Mouse Study., Arun K. Iyer Dec 2011

Fluorescence-Guided Optical Coherence Tomography Imaging For Colon Cancer Screening: A Preliminary Mouse Study., Arun K. Iyer

Arun Iyer

A new concept for cancer screening has been preliminarily investigated. A cancer targeting agent loaded with a near-infrared (NIR) dye was topically applied on the tissue to highlight cancer-suspect locations and guide optical coherence tomography (OCT) imaging, which was used to further investigate tissue morphology at the micron scale. A pilot study on ApcMin mice has been performed to preliminarily test this new cancer screening approach. As a cancer-targeting agent, poly(epsilon-caprolactone) microparticles (PCLMPs), labeled with a NIR dye and functionalized with an RGD (argenine-glycine-aspartic acid) peptide, were used. This agent recognizes the α(ν)β(3) integrin receptor (ABIR), which is over-expressed by …


Combinatorial-Designed Multifunctional Polymeric Nanosystems For Tumor-Targeted Therapeutic Delivery., Arun K. Iyer Oct 2011

Combinatorial-Designed Multifunctional Polymeric Nanosystems For Tumor-Targeted Therapeutic Delivery., Arun K. Iyer

Arun Iyer

By definition, multifunctional nanosystems include several features within a single construct so that these devices can target tumors or other disease tissue, facilitate in vivo imaging, and deliver a therapeutic agent. Investigations of these nanosystems are rapidly progressing and provide new opportunities in the management of cancer. Tumor-targeted nanosystems are currently designed based primarily on the intrinsic physico-chemical properties of off-the-shelf polymers. Following fabrication, the surfaces of these nanoscale structures are functionalized for passive or active targeted delivery to the tumors. In this Account, we describe a novel approach for the construction of multifunctional polymeric nanosystems based on combinatorial design …


Radiolabeled Oligonucleotides For Antisense Imaging., Arun Iyer Jul 2011

Radiolabeled Oligonucleotides For Antisense Imaging., Arun Iyer

Arun Iyer

Oligonucleotides radiolabeled with isotopes emitting γ-rays (for SPECT imaging) or positrons (for PET imaging) can be useful for targeting messenger RNA (mRNA) thereby serving as non-invasive imaging tools for detection of gene expression in vivo (antisense imaging). Radiolabeled oligonucleotides may also be used for monitoring their in vivo fate, thereby helping us better understand the barriers to its delivery for antisense targeting. These developments have led to a new area of molecular imaging and targeting, utilizing radiolabeled antisense oligonucleotides. However, the success of antisense imaging relies heavily on overcoming the barriers for its targeted delivery in vivo. Furthermore, the low …


The Effect Of Internalizing Human Single Chain Antibody Fragment On Liposome Targeting To Epithelioid And Sarcomatoid Mesothelioma., Arun K. Iyer Mar 2011

The Effect Of Internalizing Human Single Chain Antibody Fragment On Liposome Targeting To Epithelioid And Sarcomatoid Mesothelioma., Arun K. Iyer

Arun Iyer

Immunoliposomes (ILs) anchored with internalizing human antibodies capable of targeting all subtypes of mesothelioma can be useful for targeted imaging and therapy of this malignant disease. The objectives of this study were to evaluate both the in vitro and in vivo tumor targeted internalization of novel internalizing human single chain antibody (scFv) anchored ILs on both epithelioid (M28) and sarcomatoid (VAMT-1) subtypes of human mesothelioma. ILs were prepared by post-insertion of mesothelioma-targeting human scFv (M1) onto preformed liposomes and radiolabeled with (111)In ((111)In-IL-M1), along with control non-targeted liposomes ((111)In-CL). Incubation of (111)In-IL-M1 with M28, VAMT-1, and a control non-tumorigenic cell …


Novel Human Single Chain Antibody Fragments That Are Rapidly Internalizing Effectively Target Epithelioid And Sarcomatoid Mesotheliomas., Arun K. Iyer Mar 2011

Novel Human Single Chain Antibody Fragments That Are Rapidly Internalizing Effectively Target Epithelioid And Sarcomatoid Mesotheliomas., Arun K. Iyer

Arun Iyer

Human antibodies targeting all subtypes of mesothelioma could be useful to image and treat this deadly disease. Here we report tumor targeting of a novel internalizing human single chain antibody fragment (scFv) labeled with (⁹⁹m)Tc ((⁹⁹m)Tc-M40) in murine models of mesothelioma of both epithelioid (M28) and sarcomatoid (VAMT-1) origins. (⁹⁹m)Tc-M40 was taken up rapidly and specifically by both subtype tumor cells in vitro, with 68% to 92% internalized within 1 hour. The specificity of binding was evidenced by blocking (up to 95%) with 10-fold excess of unlabeled M40. In animal studies, tumors of both subtypes were clearly visualized by SPECT/CT …


Targeting Prostate Cancer Cells In Vivo Using A Rapidly Internalizing Novel Human Single-Chain Antibody Fragment., Arun K. Iyer Feb 2010

Targeting Prostate Cancer Cells In Vivo Using A Rapidly Internalizing Novel Human Single-Chain Antibody Fragment., Arun K. Iyer

Arun Iyer

Human antibodies targeting prostate cancer cell surface epitopes may be useful for imaging and therapy. The objective of this study was to evaluate the tumor targeting of an internalizing human antibody fragment, a small-size platform, to provide high contrast in a mouse model of human prostate carcinoma. METHODS: A prostate tumor-targeting single-chain antibody fragment (scFv), UA20, along with a nonbinding control scFv, N3M2, were labeled with (99m)Tc and evaluated for binding and rapid internalization into human prostate tumor cells in vitro and tumor homing in vivo using xenograft models. For the in vitro studies, the labeled UA20 scFv was incubated …


Oxystress Inducing Antitumor Therapeutics Via Tumor-Targeted Delivery Of Peg-Conjugated D-Amino Acid Oxidase., Arun Iyer Feb 2008

Oxystress Inducing Antitumor Therapeutics Via Tumor-Targeted Delivery Of Peg-Conjugated D-Amino Acid Oxidase., Arun Iyer

Arun Iyer

We had developed a H(2)O(2) generating enzyme, polyethylene glycol conjugated D-amino acid oxidase (PEG-DAO), which exhibited potent antitumor activity by generating toxic reactive oxygen species, namely oxidation therapy, subsequently showed remarkable antitumor effect on murine Sarcoma 180 solid tumor, by taking advantage of the enhanced permeability and retention effect. Along this line, we report here the preparation of PEG-DAO by use of recombinant DAO and its antitumor activity by using various tumor cell lines and tumor models. Recombinant DAO (rDAO) was obtained from E. coli BL21 (DE3) carrying the porcine DAO expression vector with high yield (20 mg/l) and high …


Tumor-Targeted Induction Of Oxystress For Cancer Therapy., Arun K. Iyer Jul 2007

Tumor-Targeted Induction Of Oxystress For Cancer Therapy., Arun K. Iyer

Arun Iyer

Reactive oxygen species (ROS), such as superoxide anion radicals (O.-2) and hydrogen peroxide (H2O2) are potentially harmful by-products of normal cellular metabolism that directly affect cellular functions. ROS is generated by all aerobic organisms and it seems to be indispensable for signal transduction pathways that regulate cell growth and reduction-oxidation (redox) status. However, overproduction of these highly reactive oxygen metabolites can initiate lethal chain reactions, which involve oxidation and damage to structures that are crucial for cellular integrity and survival. In fact, many antitumor agents, such as vinblastine, cisplatin, mitomycin C, doxorubicin, camptothecin, inostamycin, neocarzinostatin and many others exhibit antitumor …


High-Loading Nanosized Micelles Of Copoly(Styrene-Maleic Acid)-Zinc Protoporphyrin For Targeted Delivery Of A Potent Heme Oxygenase Inhibitor., Arun Iyer Mar 2007

High-Loading Nanosized Micelles Of Copoly(Styrene-Maleic Acid)-Zinc Protoporphyrin For Targeted Delivery Of A Potent Heme Oxygenase Inhibitor., Arun Iyer

Arun Iyer

Amphiphilic styrene-maleic acid (SMA) copolymer efficiently formed micelles with a potent heme oxygenase inhibitor-zinc protoporphyrin (ZnPP). The micelles were constructed by subtle pH adjustments to form non-covalent interaction between the hydrophobic ZnPP and amphiphilic SMA. The micelles (SMA-ZnPP) thus formed were nanoparticles with narrow size distribution in water (mean diameter 176.5nm), having tunable loading (from 15% to 60% w/w of ZnPP) with remarkable aqueous solubility. SMA-ZnPP had an average molecular size of 144kDa as determined by size-exclusion chromatography (SEC), this size is a marked increase from the molecular weight of free ZnPP (626.03Da), suggesting the formation of micellar structure. The …


Exploiting The Enhanced Permeability And Retention Effect For Tumor Targeting., Arun Iyer Aug 2006

Exploiting The Enhanced Permeability And Retention Effect For Tumor Targeting., Arun Iyer

Arun Iyer

Of the tumor targeting strategies, the enhanced permeability and retention (EPR) effect of macromolecules is a key mechanism for solid tumor targeting, and considered a gold standard for novel drug design. In this review, we discuss various endogenous factors that can positively impact the EPR effect in tumor tissues. Further, we discuss ways to augment the EPR effect by use of exogenous agents, as well as practical methods available in the clinical setting. Some innovative examples developed by researchers to combat cancer by the EPR mechanism are also discussed.