Open Access. Powered by Scholars. Published by Universities.®

Organisms Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Organisms

Whole Genome Sequence Data Implicate Rbfox1 In Epilepsy Risk In Baboons, Mark Z. Kos, Melanie A. Carless, Lucy Blondell, Mary M. Leland, Koyle D. Knape, Harald H. H. Goring, Charles A. Szabo Sep 2023

Whole Genome Sequence Data Implicate Rbfox1 In Epilepsy Risk In Baboons, Mark Z. Kos, Melanie A. Carless, Lucy Blondell, Mary M. Leland, Koyle D. Knape, Harald H. H. Goring, Charles A. Szabo

Research Symposium

Background: Baboons exhibit a genetic generalized epilepsy (GGE) that resembles juvenile myoclonic epilepsy and may represent a suitable genetic model for human epilepsy. The genetic underpinnings of epilepsy were investigated in a baboon colony at the Southwest National Primate Research Center (San Antonio, TX) through the analysis of whole-genome sequence (WGS) data.

Methods: Baboon WGS data were obtained for 38 cases and 19 healthy controls from the NCBI Sequence Read Archive and, after standard QC filtering, two subsets of variants were examined: (1) 20,881 SNPs from baboon homologs of 19 candidate GGE genes; and (2) 36,169 protein-altering SNPs. Association tests …


Elucidating The Impact Of Sos-Response Timing In On Escherichia Coli Survival Following Treatment With Fluoroquinolone Topoisomerase Inhibitors, Stephanie Schofield May 2023

Elucidating The Impact Of Sos-Response Timing In On Escherichia Coli Survival Following Treatment With Fluoroquinolone Topoisomerase Inhibitors, Stephanie Schofield

Honors Scholar Theses

Antibiotic treatment failure is a public health crisis, with a 2019 report stating that roughly 35,000 deaths occur in the United States yearly due to bacterial infections that are unresponsive to antibiotics (1). One complication in the treatment of bacterial infection is antibiotic persistence which further compromises our battle to effectively treat infection. Bacterial persisters can exist in clonal bacterial cultures and can tolerate antibiotic treatment by undergoing reversible phenotypic changes. They can survive drug concentrations that their genetically identical kin cannot. Some persisters remain in a slow growing state and are difficult to target with current antibiotics. A specific …


An Overview Of Viruses And The Infamous Sars-Cov-2, Jake Sun May 2023

An Overview Of Viruses And The Infamous Sars-Cov-2, Jake Sun

The Confluence

Background information on viruses is first presented which include topics like evolution, ecology, history, identification, structure, and application. The novel SARS-CoV-2, which causes COVID-19, pandemic originated in Wuhan, China in December 2019. Millions of people were infected with the virus in a short time period causing urgent concern worldwide. The purpose of this review is to provide a brief and general understanding of the SARS-CoV-2 to increase awareness and actions toward preventive measures. COVID-19 is a (+) ssRNA spherical enveloped virion that causes primarily respiratory illnesses. The S protein interacts with ACE-2 receptors on the host cell to gain entry …


A Dna-Peptide Crosslink (Dpc) Increases Mutagenicity In Sos-Induced Escherichia Coli, Alessandra Bassani May 2023

A Dna-Peptide Crosslink (Dpc) Increases Mutagenicity In Sos-Induced Escherichia Coli, Alessandra Bassani

Honors Scholar Theses

Bacteria, such as Escherichia coli, have an inducible system in response to DNA damage termed the SOS response. This system is activated when the replicative DNA polymerase (Pol) III encounters a lesion, uncouples from DNA helicase, and single-stranded DNA (ssDNA) accumulates at the replication fork. In this study, we investigated DNA-peptide crosslink (DpC), a common lesion that results from cross-linking of proteins or peptides, UV irradiation, and alkylating agents. To increase survival following formation of a lesion, the SOS response can utilize homologous recombination, translesion synthesis (TLS), or excision repair. With TLS, the levels of DNA Pol II, IV, …


The Presence Of Tetracycline-Resistant Bacteria In A Kean University Campus Soil Sample, Esther Blankson, Jessica Kobilas, Gianna Medeiros Apr 2023

The Presence Of Tetracycline-Resistant Bacteria In A Kean University Campus Soil Sample, Esther Blankson, Jessica Kobilas, Gianna Medeiros

Kean Quest

The spread of antimicrobial resistance (AMR) in the environment is a worldwide problem that threatens human health. Bacteria are becoming increasingly resistant to antibiotics as the consumption of antibiotics grows. In particular, soil can be contaminated with bacteria that are resistant to antibiotics. As of today, there is no surveillance system that tracks the spread of antibiotic-resistant bacteria, however, Tufts University aims to change this by implementing the Prevalence of Antibiotic Resistance in the Environment (PARE) project. The course-based PARE project consists of research students sampling soil in diverse locations and reporting the prevalence of antibiotic-resistant bacteria. The purpose of …


Modeling The Tripartite Role Of Cyclin C In Cellular Stress Response Coordination, Steven J. Doyle Apr 2023

Modeling The Tripartite Role Of Cyclin C In Cellular Stress Response Coordination, Steven J. Doyle

Graduate School of Biomedical Sciences Theses and Dissertations

For normal cellular function, exogenous signals must be interpreted and careful coordination must take place to ensure desired fates are achieved. Mitochondria are key regulatory nodes of cellular fate, undergoing fission/fusion cycles depending on the needs of the cell, and help mediate cell death fates. The CKM or Cdk8 kinase module, is composed of cyclin C (CC), Cdk8, Med12/12L, and Med13/13L. The CKM controls RNA polymerase II, acting as a regulator of stress-response and growth-control genes. Following stress, CC translocates to the mitochondria and interacts with both fission and iRCD apoptotic mediators. We hypothesize that CC represents a key mediator, …


Dpc29 Promotes Post-Initiation Mitochondrial Translation In Saccharomyces Cerevisiae, Kyle A. Hubble, Michael F. Henry Feb 2023

Dpc29 Promotes Post-Initiation Mitochondrial Translation In Saccharomyces Cerevisiae, Kyle A. Hubble, Michael F. Henry

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Mitochondrial ribosomes synthesize essential components of the oxidative phosphorylation (OXPHOS) system in a tightly regulated process. In the yeast Saccharomyces cerevisiae, mitochondrial mRNAs require specific translational activators, which orchestrate protein synthesis by recognition of their target gene's 5'-untranslated region (UTR). Most of these yeast genes lack orthologues in mammals, and only one such gene-specific translational activator has been proposed in humans-TACO1. The mechanism by which TACO1 acts is unclear because mammalian mitochondrial mRNAs do not have significant 5'-UTRs, and therefore must promote translation by alternative mechanisms. In this study, we examined the role of the TACO1 orthologue in yeast. We …


Alzheimer’S Disease Genetics And Short-Chain Fatty Acid Treatment In Studies Of The Murine Gut Microbiome, Diana Zajac Jan 2023

Alzheimer’S Disease Genetics And Short-Chain Fatty Acid Treatment In Studies Of The Murine Gut Microbiome, Diana Zajac

Theses and Dissertations--Physiology

Elucidating the relationship of the gut microbiome in Alzheimer's Disease (AD) risk and pathogenesis is an area of intense interest. Since 60 to 80% of AD risk is related to genetics and APOE alleles represent the most impactful genetic risk factors for AD, their mechanism(s) of action are under intense scrutiny.

First, I conducted a study on APOE targeted replacement mice to investigate the impact of APOE alleles on the murine gut microbiome. The relative abundance of bacteria from the family Ruminococacceae and related genera increased with APOE2 status. The relative abundance of the class Erysipelotrichia increased with APOE4 status, …


Knockout Of Endospanin 1 Via Crispr In Zebrafish, Danio Rerio, Jared Kittinger Jan 2023

Knockout Of Endospanin 1 Via Crispr In Zebrafish, Danio Rerio, Jared Kittinger

Williams Honors College, Honors Research Projects

I made endospanin 1 knockout (KO) zebrafish to examine its effects on lipid and bone metabolism. Endospanin 1, or leptin receptor overlapping transcript (leprot), is a cytosolic protein linked to the protein hormone leptin that influences the trafficking of leptin receptors to the plasma membrane of cells. Genes for endospanin and tyrosinase (a pigmentation enzyme) were targeted via a microinjection of guide RNAs and CRISPR Cas9 into zebrafish embryos at 2-4 cell stages. I was able to disrupt the endospanin 1 gene (based upon the disruption of tyrosinase), but very few mutant zebrafish fully developed into adults. Only low KO …


Extracting High-Molecular Weight Dna From Cyanobacteria Using Promega's Wizard® Hmw Dna Extraction Kit With A Modified Protocol, Metis, Megan A. Hept, Lesley H. Greene Jan 2023

Extracting High-Molecular Weight Dna From Cyanobacteria Using Promega's Wizard® Hmw Dna Extraction Kit With A Modified Protocol, Metis, Megan A. Hept, Lesley H. Greene

Chemistry & Biochemistry Faculty Publications

Extraction of high molecular weight (HMW) DNA for long read sequencing with little to no fragmentation and high purity is difficult to acquire from cyanobacterial species. Here we describe a modified method of extraction using Promega's Wizard® HMW DNA Extraction Kit to acquire high molecular weight DNA from cyanobacterial species. The protocol used in the kit is the “3.D. Isolating HMW DNA from Gram-Positive and Gram-Negative Bacteria” protocol. During a key step in the protocol, the lingering remnants of the mucilage layer of the cyanobacterial species is removed, preventing it from sticking to the DNA pellet produced. This customized modification …