Open Access. Powered by Scholars. Published by Universities.®

Organisms Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Organisms

Reducing Biomass Recalcitrance By Heterologous Expression Of A Bacterial Peroxidase In Tobacco (Nicotiana Benthamiana), Ayalew Ligaba-Osena, Bertrand Hankoua, Kay Dimarco, Robert Pace, Mark Crocker, Jesse Mcatee, Nivedita Nagachar, Ming Tien, Tom L. Richard Dec 2017

Reducing Biomass Recalcitrance By Heterologous Expression Of A Bacterial Peroxidase In Tobacco (Nicotiana Benthamiana), Ayalew Ligaba-Osena, Bertrand Hankoua, Kay Dimarco, Robert Pace, Mark Crocker, Jesse Mcatee, Nivedita Nagachar, Ming Tien, Tom L. Richard

Center for Applied Energy Research Faculty and Staff Publications

Commercial scale production of biofuels from lignocellulosic feed stocks has been hampered by the resistance of plant cell walls to enzymatic conversion, primarily owing to lignin. This study investigated whether DypB, the lignin-degrading peroxidase from Rodococcus jostii, depolymerizes lignin and reduces recalcitrance in transgenic tobacco (Nicotiana benthamiana). The protein was targeted to the cytosol or the ER using ER-targeting and retention signal peptides. For each construct, five independent transgenic lines were characterized phenotypically and genotypically. Our findings reveal that expression of DypB in the cytosol and ER does not affect plant development. ER-targeting increased protein accumulation, and …


Lipid Extraction From Scenedesmus Sp. Microalgae For Biodiesel Production Using Hot Compressed Hexane, Hee-Yong Shin, Jae-Hun Ryu, Seong-Youl Bae, Czarena L. Crofcheck, Mark Crocker Aug 2014

Lipid Extraction From Scenedesmus Sp. Microalgae For Biodiesel Production Using Hot Compressed Hexane, Hee-Yong Shin, Jae-Hun Ryu, Seong-Youl Bae, Czarena L. Crofcheck, Mark Crocker

Center for Applied Energy Research Faculty and Staff Publications

Lipid extraction from Scenedesmus sp. microalgae using hot compressed hexane (HCH) was investigated. Extraction performance was evaluated near the critical point of hexane and was compared with that of hexane extraction performed at room temperature and pressure, and the Bligh and Dyer extraction method. Experimental data showed that HCH significantly improves the lipid yield and rate of lipid extraction compared to the use of hexane at ambient conditions. High yields of biodiesel-convertible lipid fractions were rapidly achieved at the critical point of hexane, at a level comparable to that of the Bligh and Dyer method.


Co2 Recycling Using Microalgae For The Production Of Fuels, Michael H. Wilson, John Groppo, Andrew Placido, S. Graham, S. A. Morton Iii, Eduardo Santillan-Jimenez, Aubrey Shea, Mark Crocker, Czarena Crofcheck, Rodney Andrews Mar 2014

Co2 Recycling Using Microalgae For The Production Of Fuels, Michael H. Wilson, John Groppo, Andrew Placido, S. Graham, S. A. Morton Iii, Eduardo Santillan-Jimenez, Aubrey Shea, Mark Crocker, Czarena Crofcheck, Rodney Andrews

Center for Applied Energy Research Faculty and Staff Publications

CO2 capture and recycle using microalgae was demonstrated at a coal-fired power plant (Duke Energy’s East Bend Station, Kentucky). Using an in-house designed closed loop, vertical tube photobioreactor, Scenedesmus acutus was cultured using flue gas as the CO2 source. Algae productivity of 39 g/(m2 day) in June–July was achieved at significant scale (18,000 L), while average daily productivity slightly in excess of 10 g/(m2 day) was demonstrated in the month of December. A protocol for low-cost algae harvesting and dewatering was developed, and the conversion of algal lipids—extracted from the harvested biomass—to diesel-range hydrocarbons via catalytic …