Open Access. Powered by Scholars. Published by Universities.®

Organisms Commons

Open Access. Powered by Scholars. Published by Universities.®

Pharmacy Faculty Articles and Research

Chemicals and Drugs

2020

Articles 1 - 2 of 2

Full-Text Articles in Organisms

Cd44 Receptor Mediates Urate Crystal Phagocytosis By Macrophages And Regulates Inflammation In A Murine Peritoneal Model Of Acute Gout, Emira Bousoik, Marwa Qadri, Khaled A. Elsaid Apr 2020

Cd44 Receptor Mediates Urate Crystal Phagocytosis By Macrophages And Regulates Inflammation In A Murine Peritoneal Model Of Acute Gout, Emira Bousoik, Marwa Qadri, Khaled A. Elsaid

Pharmacy Faculty Articles and Research

Gout is a chronic arthritis caused by the deposition of poorly soluble monosodium urate monohydrate (MSU) crystals in peripheral joints. Resident macrophages initiate inflammation in response to MSU mediated by NF-κB nuclear translocation and NLRP3 inflammasome activation. We investigated the role of CD44, a transmembrane receptor, in mediating MSU phagocytosis by macrophages. We used an antibody that sheds the extracellular domain (ECD) of CD44 to study the role of the receptor and its associated protein phosphatase 2A (PP2A) in macrophage activation. We also studied the significance of CD44 in mediating MSU inflammation in-vivo. Cd44−/− BMDMs showed reduced MSU …


Chrysin‐Loaded Chitosan Nanoparticles Potentiates Antibiofilm Activity Against Staphylococcus Aureus, Busi Siddhardha, Uday Pandey, K. Kaviyarasu, Rajasekharreddy Pala, Asad Syed, Ali K. Bahkali, Abdallah M. Elgorban Feb 2020

Chrysin‐Loaded Chitosan Nanoparticles Potentiates Antibiofilm Activity Against Staphylococcus Aureus, Busi Siddhardha, Uday Pandey, K. Kaviyarasu, Rajasekharreddy Pala, Asad Syed, Ali K. Bahkali, Abdallah M. Elgorban

Pharmacy Faculty Articles and Research

The application of nanotechnology in medicine is gaining popularity due to its ability to increase the bioavailability and biosorption of numerous drugs. Chrysin, a flavone constituent of Orocylumineicum vent is well‐reported for its biological properties. However, its therapeutic potential has not been fully exploited due to its poor solubility and bioavailability. In the present study, chrysin was encapsulated into chitosan nanoparticles using TPP as a linker. The nanoparticles were characterized and investigated for their anti‐biofilm activity against Staphylococcus aureus. At sub‐Minimum Inhibitory Concentration, the nanoparticles exhibited enhanced anti‐biofilm efficacy against S. aureus as compared to its bulk counterparts, chrysin …