Open Access. Powered by Scholars. Published by Universities.®

Organisms Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Organisms

Genetic Signatures For Helicobacter Pylori Strains Of West African Origin, Kennady K. Bullock, Carrie L. Shaffer, Andrew W. Brooks, Ousman Secka, Mark H. Forsyth, Mark S. Mcclain, Timothy L. Cover Nov 2017

Genetic Signatures For Helicobacter Pylori Strains Of West African Origin, Kennady K. Bullock, Carrie L. Shaffer, Andrew W. Brooks, Ousman Secka, Mark H. Forsyth, Mark S. Mcclain, Timothy L. Cover

Veterinary Science Faculty Publications

Helicobacter pylori is a genetically diverse bacterial species that colonizes the stomach in about half of the human population. Most persons colonized by H. pylori remain asymptomatic, but the presence of this organism is a risk factor for gastric cancer. Multiple populations and subpopulations of H. pylori with distinct geographic distributions are recognized. Genetic differences among these populations might be a factor underlying geographic variation in gastric cancer incidence. Relatively little is known about the genomic features of African H. pylori strains compared to other populations of strains. In this study, we first analyzed the genomes of …


Hendra Virus Fusion Protein Transmembrane Domain Contributes To Pre-Fusion Protein Stability, Stacy Webb, Tamas Nagy, Hunter Moseley, Michael G. Fried, Rebecca Ellis Dutch Feb 2017

Hendra Virus Fusion Protein Transmembrane Domain Contributes To Pre-Fusion Protein Stability, Stacy Webb, Tamas Nagy, Hunter Moseley, Michael G. Fried, Rebecca Ellis Dutch

Molecular and Cellular Biochemistry Faculty Publications

Enveloped viruses utilize fusion (F) proteins studding the surface of the virus to facilitate membrane fusion with a target cell membrane. Fusion of the viral envelope with a cellular membrane is required for release of viral genomic material, so the virus can ultimately reproduce and spread. To drive fusion, the F protein undergoes an irreversible conformational change, transitioning from a metastable pre-fusion conformation to a more thermodynamically stable post-fusion structure. Understanding the elements that control stability of the pre-fusion state and triggering to the post-fusion conformation is important for understanding F protein function. Mutations in F protein transmembrane (TM) domains …