Open Access. Powered by Scholars. Published by Universities.®

Organisms Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Organisms

First Proof Of Concept Of Sustainable Metabolite Production From High Solids Fermentation Of Lignocellulosic Biomass Using A Bacterial Co-Culture And Cycling Flush System, Wanying Yao, Sue E. Nokes Dec 2014

First Proof Of Concept Of Sustainable Metabolite Production From High Solids Fermentation Of Lignocellulosic Biomass Using A Bacterial Co-Culture And Cycling Flush System, Wanying Yao, Sue E. Nokes

Biosystems and Agricultural Engineering Faculty Publications

To improve the lignocellulose conversion for ABE in high solids fermentation, this study explored the feasibility of cycling the process through the cellulolytic or/and solventogenic phases via intermittent flushing of the fermentation media. Five different flushing strategies (varying medium ingredients, inoculum supplement and cycling through phases) were investigated. Flushing regularly throughout the cellulolytic phase is necessary because re-incubation at 65 °C significantly improved glucose availability by at least 6-fold. The solvents accumulation was increased by 4-fold using corn stover (3-fold using miscanthus) over that produced by flushing only through the solventogenic phase. In addition, cycling process was simplified by re-incubating …


Listeria Monocytogenes Can Utilize Both M Cell Transcytosis And Inla-Mediated Uptake To Cross The Epithelial Barrier Of The Intestine During An Oral Infection Model Of Listeriosis, Hilary Denney Jan 2014

Listeria Monocytogenes Can Utilize Both M Cell Transcytosis And Inla-Mediated Uptake To Cross The Epithelial Barrier Of The Intestine During An Oral Infection Model Of Listeriosis, Hilary Denney

Theses and Dissertations--Medical Sciences

The invasive pathways, InlA- and InB-mediated uptake and M cell transcytosis, that Listeria monocytogenes uses to invade the intestine have mainly been studied using infection models that do not truly replicate what occurs during a natural infection. Recently, our lab has developed an oral infection model that is more physiolocally relevant to what occurs during food borne listeriosis. We have sought to evaluate the relative roles of the previously defined invasive pathways, in our oral model of infection. We have done this by utilizing an InlAmCG Lm strain that is able to bind murine E-cadherin, knockout Lm strains, ΔinlA Lm …