Open Access. Powered by Scholars. Published by Universities.®

Organisms Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Organisms

Transmembrane Domains Of Highly Pathogenic Viral Fusion Proteins Exhibit Trimeric Association In Vitro, Stacy R. Webb, Stacy E. Smith, Michael G. Fried, Rebecca Ellis Dutch Apr 2018

Transmembrane Domains Of Highly Pathogenic Viral Fusion Proteins Exhibit Trimeric Association In Vitro, Stacy R. Webb, Stacy E. Smith, Michael G. Fried, Rebecca Ellis Dutch

Molecular and Cellular Biochemistry Faculty Publications

Enveloped viruses require viral fusion proteins to promote fusion of the viral envelope with a target cell membrane. To drive fusion, these proteins undergo large conformational changes that must occur at the right place and at the right time. Understanding the elements which control the stability of the prefusion state and the initiation of conformational changes is key to understanding the function of these important proteins. The construction of mutations in the fusion protein transmembrane domains (TMDs) or the replacement of these domains with lipid anchors has implicated the TMD in the fusion process. However, the structural and molecular details …


Functional And Structural Studies On The Neisseria Gonorrhoeae Gmha, The First Enzyme In The Glycero-Manno-Heptose Biosynthesis Pathways, Demonstrate A Critical Role In Lipooligosaccharide Synthesis And Gonococcal Viability, Igor H. Wierzbicki, Ryszard A. Zielke, Konstantin V. Korotkov, Aleksandra E. Sikora Jan 2017

Functional And Structural Studies On The Neisseria Gonorrhoeae Gmha, The First Enzyme In The Glycero-Manno-Heptose Biosynthesis Pathways, Demonstrate A Critical Role In Lipooligosaccharide Synthesis And Gonococcal Viability, Igor H. Wierzbicki, Ryszard A. Zielke, Konstantin V. Korotkov, Aleksandra E. Sikora

Molecular and Cellular Biochemistry Faculty Publications

Sedoheptulose-7-phosphate isomerase, GmhA, is the first enzyme in the biosynthesis of nucleotide-activated-glycero-manno-heptoses and an attractive, yet underexploited, target for development of broad-spectrum antibiotics. We demonstrated that GmhA homologs in Neisseria gonorrhoeae and N. meningitidis (hereafter called GmhAGC and GmhANM, respectively) were interchangeable proteins essential for lipooligosaccharide (LOS) synthesis, and their depletion had adverse effects on neisserial viability. In contrast, the Escherichia coli ortholog failed to complement GmhAGC depletion. Furthermore, we showed that GmhAGC is a cytoplasmic enzyme with induced expression at mid-logarithmic phase, upon iron deprivation and anaerobiosis, and conserved in contemporary gonococcal …