Open Access. Powered by Scholars. Published by Universities.®

Organisms Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Organisms

Regulating Rsma Expression In Pseudomonas Aeruginosa, Sean D. Stacey Aug 2013

Regulating Rsma Expression In Pseudomonas Aeruginosa, Sean D. Stacey

Electronic Theses and Dissertations

Pseudomonas aeruginosa, a Gram-negative bacillus, commonly infects immunocompromised individuals and uses a variety of virulence factors to persist in these hosts. The posttranscriptional regulator, RsmA, plays a role in the expression of many virulence factors in P. aeruginosa. RsmA up regulates virulence factors used in colonizing hosts. However, regulation of rsmA is not well elucidated. Transposon mutagenesis was performed on P. aeruginosa containing a transcriptional rsmA-lacZ fusion to answer this question. Mutants were screened via β-galactosidase assay and transposon insertions identified via arbitrary PCR. A probable MFS transporter, we named mtpX, was one significant transposon mutant identified. …


Systematic Assessment Of The Contribution Of Superantigens To Nasopharyngeal Colonization In A Mouse Model Of Streptococcal Infection, Katherine J. Kasper Jan 2013

Systematic Assessment Of The Contribution Of Superantigens To Nasopharyngeal Colonization In A Mouse Model Of Streptococcal Infection, Katherine J. Kasper

Electronic Thesis and Dissertation Repository

Streptococcus pyogenes is adapted for persistence in humans. It typically colonizes the tonsils and skin, and humans are the only known reservoir. S. pyogenes can cause a wide range of mild to serious infections. Most streptococci-related deaths are due to complications of rheumatic fever and invasive infections. S. pyogenes produces virulence factors that contribute to the pathogen’s ability to colonize and cause disease, including streptococcal superantigens (SAgs), also known as streptococcal pyrogenic exotoxins (Spes). SAgs function by cross-linking T cells and antigen presenting cells (APC) which may cause a massive inflammatory response, and as such have been found to contribute …