Open Access. Powered by Scholars. Published by Universities.®

Organisms Commons

Open Access. Powered by Scholars. Published by Universities.®

Life Sciences

PDF

University of Kentucky

Gut microbiome

Articles 1 - 2 of 2

Full-Text Articles in Organisms

Alzheimer’S Disease Genetics And Short-Chain Fatty Acid Treatment In Studies Of The Murine Gut Microbiome, Diana Zajac Jan 2023

Alzheimer’S Disease Genetics And Short-Chain Fatty Acid Treatment In Studies Of The Murine Gut Microbiome, Diana Zajac

Theses and Dissertations--Physiology

Elucidating the relationship of the gut microbiome in Alzheimer's Disease (AD) risk and pathogenesis is an area of intense interest. Since 60 to 80% of AD risk is related to genetics and APOE alleles represent the most impactful genetic risk factors for AD, their mechanism(s) of action are under intense scrutiny.

First, I conducted a study on APOE targeted replacement mice to investigate the impact of APOE alleles on the murine gut microbiome. The relative abundance of bacteria from the family Ruminococacceae and related genera increased with APOE2 status. The relative abundance of the class Erysipelotrichia increased with APOE4 status, …


Ketogenic Diet Enhances Neurovascular Function With Altered Gut Microbiome In Young Healthy Mice, David Ma, Amy C. Wang, Ishita Parikh, Stefan J. Green, Jared D. Hoffman, George Chlipala, M. Paul Murphy, Brent S. Sokola, Björn Bauer, Anika M. S. Hartz, Ai-Ling Lin Apr 2018

Ketogenic Diet Enhances Neurovascular Function With Altered Gut Microbiome In Young Healthy Mice, David Ma, Amy C. Wang, Ishita Parikh, Stefan J. Green, Jared D. Hoffman, George Chlipala, M. Paul Murphy, Brent S. Sokola, Björn Bauer, Anika M. S. Hartz, Ai-Ling Lin

Sanders-Brown Center on Aging Faculty Publications

Neurovascular integrity, including cerebral blood flow (CBF) and blood-brain barrier (BBB) function, plays a major role in determining cognitive capability. Recent studies suggest that neurovascular integrity could be regulated by the gut microbiome. The purpose of the study was to identify if ketogenic diet (KD) intervention would alter gut microbiome and enhance neurovascular functions, and thus reduce risk for neurodegeneration in young healthy mice (12–14 weeks old). Here we show that with 16 weeks of KD, mice had significant increases in CBF and P-glycoprotein transports on BBB to facilitate clearance of amyloid-beta, a hallmark of Alzheimer’s disease (AD). These neurovascular …