Open Access. Powered by Scholars. Published by Universities.®

Organisms Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Organisms

The Boiling Springs Lake Metavirome: Charting The Viral Sequence-Space Of An Extreme Environment Microbial Ecosystem, Geoffrey Scott Diemer Mar 2014

The Boiling Springs Lake Metavirome: Charting The Viral Sequence-Space Of An Extreme Environment Microbial Ecosystem, Geoffrey Scott Diemer

Dissertations and Theses

Viruses are the most abundant organisms on Earth, yet their collective evolutionary history, biodiversity and functional capacity is not well understood. Viral metagenomics offers a potential means of establishing a more comprehensive view of virus diversity and evolution, as vast amounts of new sequence data becomes available for comparative analysis.
Metagenomic DNA from virus-sized particles (smaller than 0.2 microns in diameter) was isolated from approximately 20 liters of sediment obtained from Boiling Springs Lake (BSL) and sequenced. BSL is a large, acidic hot-spring (with a pH of 2.2, and temperatures ranging from 50°C to 96°C) located in Lassen Volcanic National …


Metagenomes From High-Temperature Chemotrophic Systems Reveal Geochemical Controls On Microbial Community Structure And Function, William P. Inskeep, Douglas B. Rusch, Zackary J. Jay, Markus J. Herrgard, Mark A. Kozubal, Toby H. Richardson, Richard E. Macur, Natsuko Hamamura, Ryan Dem. Jennings, Bruce W. Fouke, Anna-Louise Reysenbach, Frank Roberto, Mark Young, Ariel Schwartz, Eric S. Boyd, Jonathan H. Badger, Eric J. Mathur, Alice C. Ortmann, Mary Bateson, Gill Geesey Mar 2010

Metagenomes From High-Temperature Chemotrophic Systems Reveal Geochemical Controls On Microbial Community Structure And Function, William P. Inskeep, Douglas B. Rusch, Zackary J. Jay, Markus J. Herrgard, Mark A. Kozubal, Toby H. Richardson, Richard E. Macur, Natsuko Hamamura, Ryan Dem. Jennings, Bruce W. Fouke, Anna-Louise Reysenbach, Frank Roberto, Mark Young, Ariel Schwartz, Eric S. Boyd, Jonathan H. Badger, Eric J. Mathur, Alice C. Ortmann, Mary Bateson, Gill Geesey

Biology Faculty Publications and Presentations

The Yellowstone caldera contains the most numerous and diverse geothermal systems on Earth, yielding an extensive array of unique high-temperature environments that host a variety of deeply-rooted and understudied Archaea, Bacteria and Eukarya. The combination of extreme temperature and chemical conditions encountered in geothermal environments often results in considerably less microbial diversity than other terrestrial habitats and offers a tremendous opportunity for studying the structure and function of indigenous microbial communities and for establishing linkages between putative metabolisms and element cycling. Metagenome sequence (14-15,000 Sanger reads per site) was obtained for five hightemperature (>65°C) chemotrophic microbial communities sampled from …