Open Access. Powered by Scholars. Published by Universities.®

Organisms Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Organisms

Resolving The Repression Pathway Of Virulence Gene Hila In Salmonella, Alexandra King, Lon Chubiz Phd, Brenda Pratte, Lauren Daugherty Jun 2022

Resolving The Repression Pathway Of Virulence Gene Hila In Salmonella, Alexandra King, Lon Chubiz Phd, Brenda Pratte, Lauren Daugherty

Undergraduate Research Symposium

Salmonella is a relatively abundant, virulent species of bacteria that is most known for spreading gastrointestinal diseases through food. These illnesses result in approximately 1.35 million infections, including over 25,000 hospitalizations each year, in the U.S. alone (CDC.gov). As antibiotic resistance becomes an increasingly urgent public health problem, the importance of developing alternative treatment methods is only becoming more crucial. One of the genes responsible for this virulence is known as hilA. HilA is the main transcriptional regulator of Salmonella Pathogenicity Island-1 gene (UniProt). SPI-1 plays an important role in the invasion of Salmonella into epithelial cells. The proteins encoded …


The Large And Small Of It: The Microbiome And Metagenomics, Austin Hopkins, Elaina Gollmar, Jessica Fernandez, Shawn Wolf, Austin Hilverding, Andrew M. Roecker Mar 2022

The Large And Small Of It: The Microbiome And Metagenomics, Austin Hopkins, Elaina Gollmar, Jessica Fernandez, Shawn Wolf, Austin Hilverding, Andrew M. Roecker

Pharmacy and Wellness Review

Metagenomics, the analysis of the microbial genome, permits scientists to understand the influences of external sources including diet, metabolism and antibiotics on the human microbiome. Research has revealed the possibility of a core symbiosis between humans and bacteria. The main role of the human microbiome is to aid in digestion, but identified ancillary roles include immunologic homeostasis and infection prevention. Quantifying the composition and variability of the microbiome will help lead to future treatments or preventive strategies against unhealthy change. A variety of methods may be used to define the microbiome, and 16S amplicon sequencing is primarily utilized today. Probiotics …


Genetic Signatures For Helicobacter Pylori Strains Of West African Origin, Kennady K. Bullock, Carrie L. Shaffer, Andrew W. Brooks, Ousman Secka, Mark H. Forsyth, Mark S. Mcclain, Timothy L. Cover Nov 2017

Genetic Signatures For Helicobacter Pylori Strains Of West African Origin, Kennady K. Bullock, Carrie L. Shaffer, Andrew W. Brooks, Ousman Secka, Mark H. Forsyth, Mark S. Mcclain, Timothy L. Cover

Veterinary Science Faculty Publications

Helicobacter pylori is a genetically diverse bacterial species that colonizes the stomach in about half of the human population. Most persons colonized by H. pylori remain asymptomatic, but the presence of this organism is a risk factor for gastric cancer. Multiple populations and subpopulations of H. pylori with distinct geographic distributions are recognized. Genetic differences among these populations might be a factor underlying geographic variation in gastric cancer incidence. Relatively little is known about the genomic features of African H. pylori strains compared to other populations of strains. In this study, we first analyzed the genomes of …


Optimization Of A Genomic Editing System Using Crispr/Cas9-Induced Site-Specific Gene Integration, Jillian L. Mccool Ms., Nick Hum, Gabriela G. Loots Aug 2016

Optimization Of A Genomic Editing System Using Crispr/Cas9-Induced Site-Specific Gene Integration, Jillian L. Mccool Ms., Nick Hum, Gabriela G. Loots

STAR Program Research Presentations

The CRISPR-Cas system is an adaptive immune system found in bacteria which helps protect against the invasion of other microorganisms. This system induces double stranded breaks at precise genomic loci (1) in which repairs are initiated and insertions of a target are completed in the process. This mechanism can be used in eukaryotic cells in combination with sgRNAs (1) as a tool for genome editing. By using this CRISPR-Cas system, in addition to the “safe harbor locus,” ROSAβ26, the incorporation of a target gene into a site that is not susceptible to gene silencing effects can be achieved through few …


Development Of Pyrf-Based Genetic System For Targeted Gene Deletion In Clostridium Thermocellum And Creation Of A Pta Mutant, Shital A. Tripathi, Daniel G. Olson, D. Aaron Argyros, Bethany B. Miller, Trisha F. Barrett, Daniel M. Murphy, Jesse D. Mccool, Anne K. Warner, Vineet B. Rajgarhia, Lee R. Lynd, David A. Hogsett, Nicky C. Caiazza Aug 2010

Development Of Pyrf-Based Genetic System For Targeted Gene Deletion In Clostridium Thermocellum And Creation Of A Pta Mutant, Shital A. Tripathi, Daniel G. Olson, D. Aaron Argyros, Bethany B. Miller, Trisha F. Barrett, Daniel M. Murphy, Jesse D. Mccool, Anne K. Warner, Vineet B. Rajgarhia, Lee R. Lynd, David A. Hogsett, Nicky C. Caiazza

Dartmouth Scholarship

We report development of a genetic system for making targeted gene knockouts in Clostridium thermocellum, a thermophilic anaerobic bacterium that rapidly solubilizes cellulose. A toxic uracil analog, 5-fluoroorotic acid (5-FOA), was used to select for deletion of the pyrF gene. The ΔpyrF strain is a uracil auxotroph that could be restored to a prototroph via ectopic expression of pyrF from a plasmid, providing a positive genetic selection. Furthermore, 5-FOA was used to select against plasmid-expressed pyrF, creating a negative selection for plasmid loss. This technology was used to delete a gene involved in organic acid production, namely pta, which encodes …


Metal-Resistance Genetically Engineered Bacteria, Sylvia Daunert, Donna Scott, Sridhar Ramanathan Jun 1996

Metal-Resistance Genetically Engineered Bacteria, Sylvia Daunert, Donna Scott, Sridhar Ramanathan

KWRRI Research Reports

Bacterial-based electrochemical and optical sensing systems that respond in a highly selective and sensitive manner to antimonite and arsenite have been developed. This was accomplished by using genetically engineered bacteria bearing one of two plasmids constructed for our studies. The first plasmid, pBGD23, contains the operator/promoter region (O/P) and the gene of the ArsR protein from the ars operon upstream from the β-galactosidase gene. In the absence of antimonite/arsenite, ArsR binds to the 0/P site and prevents the transcription of the genes for ArsR and β-galactosidase, thus blocking expression of these proteins. When antimonite or arsenite is present in the …