Open Access. Powered by Scholars. Published by Universities.®

Organisms Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Organisms

A Comparative Genomic Analysis Of Putative Pathogenicity Genes In The Host-Specific Sibling Species Colletotrichum Graminicola And Colletotrichum Sublineola, Ester A. S. Buiate, Katia Viana Xavier, Neil Moore, Maria F. Torres, Mark L. Farman, Christopher L. Schardl, Lisa J. Vaillancourt Jan 2017

A Comparative Genomic Analysis Of Putative Pathogenicity Genes In The Host-Specific Sibling Species Colletotrichum Graminicola And Colletotrichum Sublineola, Ester A. S. Buiate, Katia Viana Xavier, Neil Moore, Maria F. Torres, Mark L. Farman, Christopher L. Schardl, Lisa J. Vaillancourt

Plant Pathology Faculty Publications

Background: Colletotrichum graminicola and C. sublineola cause anthracnose leaf and stalk diseases of maize and sorghum, respectively. In spite of their close evolutionary relationship, the two species are completely host-specific. Host specificity is often attributed to pathogen virulence factors, including specialized secondary metabolites (SSM), and small-secreted protein (SSP) effectors. Genes relevant to these categories were manually annotated in two co-occurring, contemporaneous strains of C. graminicola and C. sublineola. A comparative genomic and phylogenetic analysis was performed to address the evolutionary relationships among these and other divergent gene families in the two strains.

Results: Inoculation of maize with C. sublineola …


Fungal Melanin: What Do We Know About Structure?, Joshua D. Nosanchuk, Ruth E. Stark, Arturo Casadevall Dec 2015

Fungal Melanin: What Do We Know About Structure?, Joshua D. Nosanchuk, Ruth E. Stark, Arturo Casadevall

Publications and Research

The production of melanin significantly enhances the virulence of many important human pathogenic fungi. Despite fungal melanin’s importance in human disease, as well as melanin’s contribution to the ability of fungi to survive in diverse hostile environments, the structure of melanin remains unsolved. Nevertheless, ongoing research efforts have progressively revealed several notable structural characteristics of this enigmatic pigment, which will be the focus of this review. These compositional and organizational insights could further our ability to develop novel therapeutic approaches to combat fungal disease and enhance our understanding of how melanin is inserted into the cell wall.