Open Access. Powered by Scholars. Published by Universities.®

Organisms Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Organisms

Cryptococcus Neoformans Melanization Incorporates Multiple Catecholamines To Produce Polytypic Melanin, Rosanna P. Baker, Christine Chrissian, Ruth E. Stark, Arturo Casadevall Dec 2021

Cryptococcus Neoformans Melanization Incorporates Multiple Catecholamines To Produce Polytypic Melanin, Rosanna P. Baker, Christine Chrissian, Ruth E. Stark, Arturo Casadevall

Publications and Research

Melanin is a major virulence factor in pathogenic fungi that enhances the ability of fungal cells to resist immune clearance. Cryptococcus neoformans is an important human pathogenic fungus that synthesizes melanin from exogenous tissue catecholamine precursors during infection, but the type of melanin made in cryptococcal meningoencephalitis is unknown. We analyzed the efficacy of various catecholamines found in brain tissue in supporting melanization using animal brain tissue and synthetic catecholamine mixtures reflecting brain tissue proportions. Solid-state NMR spectra of the melanin pigment produced from such mixtures yielded more melanin than expected if only the preferred constituent dopamine had been incorporated, …


Telomeric And Sub-Telomeric Structure And Implications In Fungal Opportunistic Pathogens, Raffaella Diotti, Michelle Esposito, Chang Hui Shen Jun 2021

Telomeric And Sub-Telomeric Structure And Implications In Fungal Opportunistic Pathogens, Raffaella Diotti, Michelle Esposito, Chang Hui Shen

Publications and Research

Telomeres are long non-coding regions found at the ends of eukaryotic linear chromosomes. Although they have traditionally been associated with the protection of linear DNA ends to avoid gene losses during each round of DNA replication, recent studies have demonstrated that the role of these sequences and their adjacent regions go beyond just protecting chromosomal ends. Regions nearby to telomeric sequences have now been identified as having increased variability in the form of duplications and rearrangements that result in new functional abilities and biodiversity. Furthermore, unique fungal telomeric and chromatin structures have now extended clinical capabilities and understanding of pathogenicity …