Open Access. Powered by Scholars. Published by Universities.®

Organisms Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Organisms

The Temperature-Dependent Conformational Ensemble Of Sars-Cov-2 Main Protease (Mpro), Ali Ebrahim, Blake T. Riley, Desigan Kumaran, Babak Andi, Martin R. Fuchs, Sean Mcsweeney, Daniel A. Keedy Nov 2021

The Temperature-Dependent Conformational Ensemble Of Sars-Cov-2 Main Protease (Mpro), Ali Ebrahim, Blake T. Riley, Desigan Kumaran, Babak Andi, Martin R. Fuchs, Sean Mcsweeney, Daniel A. Keedy

Publications and Research

The COVID-19 pandemic, instigated by the SARS-CoV-2 coronavirus, continues to plague the globe. The SARS-CoV-2 main protease, or Mpro, is a promising target for development of novel antiviral therapeutics. Previous X-ray crystal structures of Mpro were obtained at cryogenic temperature or room temperature only. Here we report a series of high-resolution crystal structures of unliganded Mpro across multiple temperatures from cryogenic to physiological, and another at high humidity. We interrogate these datasets with parsimonious multiconformer models, multi-copy ensemble models, and isomorphous difference density maps. Our analysis reveals a temperature-dependent conformational landscape for Mpro, including …


Conformational Flexibility In The Enterovirus Rna Replication Platform, Meghan S. Warden, Kai Cai, Gabriel Cornilescu, Jordan E. Burke, Komala Ponniah, Samuel E. Butcher, Steven M. Pascal Jan 2019

Conformational Flexibility In The Enterovirus Rna Replication Platform, Meghan S. Warden, Kai Cai, Gabriel Cornilescu, Jordan E. Burke, Komala Ponniah, Samuel E. Butcher, Steven M. Pascal

Chemistry & Biochemistry Faculty Publications

A presumed RNA cloverleaf (5′CL), located at the 5′-most end of the noncoding region of the enterovirus genome, is the primary established site for initiation of genomic replication. Stem–loop B (SLB) and stem–loop D (SLD), the two largest stem–loops within the 5′CL, serve as recognition sites for protein interactions that are essential for replication. Here we present the solution structure of rhinovirus serotype 14 5′CL using a combination of nuclear magnetic resonance spectroscopy and small-angle X-ray scattering. In the absence of magnesium, the structure adopts an open, somewhat extended conformation. In the presence of magnesium, the structure compacts, bringing SLB …