Open Access. Powered by Scholars. Published by Universities.®

Organisms Commons

Open Access. Powered by Scholars. Published by Universities.®

Bacteria

Old Dominion University

MRSA

Articles 1 - 2 of 2

Full-Text Articles in Organisms

Nanosecond Pulsed Electric Fields Increase Antibiotic Susceptibility In Methicillin-Resistant Staphylococcus Aureus, Alexandra E. Chittams-Miles, Areej Malik, Erin B. Purcell, Claudia Muratori Jan 2024

Nanosecond Pulsed Electric Fields Increase Antibiotic Susceptibility In Methicillin-Resistant Staphylococcus Aureus, Alexandra E. Chittams-Miles, Areej Malik, Erin B. Purcell, Claudia Muratori

Bioelectrics Publications

Staphylococcus aureus is the leading cause of skin and soft-tissue infections (SSTIs). SSTIs caused by bacteria resistant to antimicrobials, such as methicillin-resistant S. aureus (MRSA), are increasing in incidence and have led to higher rates of hospitalization. In this study, we measured MRSA inactivation by nanosecond pulsed electric fields (nsPEF), a promising new cell ablation technology. Our results show that treatment with 120 pulses of 600 ns duration (28 kV/cm, 1 Hz), caused modest inactivation, indicating cellular damage. We anticipated that the perturbation created by nsPEF could increase antibiotic efficacy if nsPEF were applied as a co-treatment. To test this …


Using Nspefs To Sensitize Mrsa To Vancomycin Treatment, Areej Malik, Alexandra E. Chittams-Miles, Claudia Muratori, Erin B. Purcell Jan 2023

Using Nspefs To Sensitize Mrsa To Vancomycin Treatment, Areej Malik, Alexandra E. Chittams-Miles, Claudia Muratori, Erin B. Purcell

The Graduate School Posters

Staphylococcus aureus (S. aureus) is a biofilm-forming pathogen. S. aureus treatment is marked by the development of antibiotic resistance. The public health impact has increased since the emergence of methicillin-resistant S. aureus (MRSA), which has started to show intermediate resistance to vancomycin in MRSA. Nano-second pulse electric fields (nsPEFs) are low-energy and high-power electric pulses, which have been suggested to sensitize pathogens to antibiotics by creating transient pores in the cell membrane. Our combinatorial treatment includes nsPEF pre-treatment and vancomycin post-treatment of MRSA cells. Our results show that MRSA log phase cells had the highest susceptibility to vancomycin. …