Open Access. Powered by Scholars. Published by Universities.®

Organisms Commons

Open Access. Powered by Scholars. Published by Universities.®

Bacteria

PDF

Old Dominion University

Series

Bacteria

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Organisms

Identification Of A Rickettsial Endosymbiont In A Soft Tick Ornithodoros Turicata Americanus, Lichao Liu, Daniel E. Sonenshine, Hameeda Sultana, Girish Neelakanta Jan 2022

Identification Of A Rickettsial Endosymbiont In A Soft Tick Ornithodoros Turicata Americanus, Lichao Liu, Daniel E. Sonenshine, Hameeda Sultana, Girish Neelakanta

Biological Sciences Faculty Publications

Bacterial endosymbionts are abundantly found in both hard and soft ticks. Occidentia massiliensis, a rickettsial endosymbiont, was first identified in the soft tick Ornithodoros sonrai collected from Senegal and later was identified in a hard tick Africaniella transversale. In this study, we noted the presence of Occidentia species, designated as Occidentia-like species, in a soft tick O. turicata americanus. Sequencing and phylogenetic analyses of the two genetic markers, 16S rRNA and groEL confirmed the presence of Occidentia-like species in O. turicata americanus ticks. The Occidentia-like species was noted to be present in all developmental stages …


Wake Me When It's Over- Bacterial Toxin-Antitoxin Proteins And Induced Dormancy, Nathan P. Coussens, Dayle A. Daines Jan 2016

Wake Me When It's Over- Bacterial Toxin-Antitoxin Proteins And Induced Dormancy, Nathan P. Coussens, Dayle A. Daines

Biological Sciences Faculty Publications

Toxin-antitoxin systems are encoded by bacteria and archaea to enable an immediate response to environmental stresses, including antibiotics and the host immune response. During normal conditions, the antitoxin components prevent toxins from interfering with metabolism and arresting growth; however, toxin activation enables microbes to remain dormant through unfavorable conditions that might continue over millions of years. Intense investigations have revealed a multitude of mechanisms for both regulation and activation of toxin-antitoxin systems, which are abundant in pathogenic microorganisms. This minireview provides an overview of the current knowledge regarding type II toxin-antitoxin systems along with their clinical and environmental implications.