Open Access. Powered by Scholars. Published by Universities.®

Medical Specialties Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Medical Specialties

Similarly Efficacious Anti-Malarial Drugs Sj733 And Pyronaridine Differ In Their Ability To Remove Circulating Parasites In Mice, Arya Sheelanair, Aleksandra S. Romanczuk, Rosemary A. Aogo, Rohit Nemai Haldar, Lianne I. M. Lansink, Deborah Cromer, Yandira G. Salinas, R. Kiplin Guy, James S. Mccarthy, Miles P. Davenport, Ashraful Haque, David S. Khoury Feb 2022

Similarly Efficacious Anti-Malarial Drugs Sj733 And Pyronaridine Differ In Their Ability To Remove Circulating Parasites In Mice, Arya Sheelanair, Aleksandra S. Romanczuk, Rosemary A. Aogo, Rohit Nemai Haldar, Lianne I. M. Lansink, Deborah Cromer, Yandira G. Salinas, R. Kiplin Guy, James S. Mccarthy, Miles P. Davenport, Ashraful Haque, David S. Khoury

Pharmaceutical Sciences Faculty Publications

BACKGROUND: Artemisinin-based combination therapy (ACT) has been a mainstay for malaria prevention and treatment. However, emergence of drug resistance has incentivised development of new drugs. Defining the kinetics with which circulating parasitized red blood cells (pRBC) are lost after drug treatment, referred to as the "parasite clearance curve", has been critical for assessing drug efficacy; yet underlying mechanisms remain partly unresolved. The clearance curve may be shaped both by the rate at which drugs kill parasites, and the rate at which drug-affected parasites are removed from circulation.

METHODS: In this context, two anti-malarials, SJ733, and an ACT partner drug, pyronaridine …


Second Heart Field–Derived Cells Contribute To Angiotensin Ii–Mediated Ascending Aortopathies, Hisashi Sawada, Yuriko Katsumata, Hideyuki Higashi, Chen Zhang, Yanming Li, Stephanie Morgan, Lang H. Lee, Sasha A. Singh, Jeff Z. Chen, Michael K. Franklin, Jessica J. Moorleghen, Deborah A. Howatt, Debra L. Rateri, Ying H. Shen, Scott A. Lemaire, Masanori Aikawa, Mark W. Majesky, Hong S. Lu, Alan Daugherty Feb 2022

Second Heart Field–Derived Cells Contribute To Angiotensin Ii–Mediated Ascending Aortopathies, Hisashi Sawada, Yuriko Katsumata, Hideyuki Higashi, Chen Zhang, Yanming Li, Stephanie Morgan, Lang H. Lee, Sasha A. Singh, Jeff Z. Chen, Michael K. Franklin, Jessica J. Moorleghen, Deborah A. Howatt, Debra L. Rateri, Ying H. Shen, Scott A. Lemaire, Masanori Aikawa, Mark W. Majesky, Hong S. Lu, Alan Daugherty

Sanders-Brown Center on Aging Faculty Publications

BACKGROUND: The ascending aorta is a common location for aneurysm and dissection. This aortic region is populated by a mosaic of medial and adventitial cells that are embryonically derived from either the second heart field (SHF) or the cardiac neural crest. SHF-derived cells populate areas that coincide with the spatial specificity of thoracic aortopathies. The purpose of this study was to determine whether and how SHF-derived cells contribute to ascending aortopathies.

METHODS: Ascending aortic pathologies were examined in patients with sporadic thoracic aortopathies and angiotensin II (AngII)–infused mice. Ascending aortas without overt pathology from AngII-infused mice were subjected …


Gut Microbial Trimethylamine Is Elevated In Alcohol-Associated Hepatitis And Contributes To Ethanol-Induced Liver Injury In Mice, Robert N. Helsley, Tatsunori Miyata, Anagha Kadam, Venkateshwari Varadharajan, Naseer Sangwan, Emily C. Huang, Rakhee Banerjee, Amanda L. Brown, Kevin K. Fung, William J. Massey, Chase Neumann, Danny Orabi, Lucas J. Osborn, Rebecca C. Schugar, Megan R. Mcmullen, Annette Bellar, Kyle L. Poulsen, Adam Kim, Vai Pathak, Marko Mrdjen Jan 2022

Gut Microbial Trimethylamine Is Elevated In Alcohol-Associated Hepatitis And Contributes To Ethanol-Induced Liver Injury In Mice, Robert N. Helsley, Tatsunori Miyata, Anagha Kadam, Venkateshwari Varadharajan, Naseer Sangwan, Emily C. Huang, Rakhee Banerjee, Amanda L. Brown, Kevin K. Fung, William J. Massey, Chase Neumann, Danny Orabi, Lucas J. Osborn, Rebecca C. Schugar, Megan R. Mcmullen, Annette Bellar, Kyle L. Poulsen, Adam Kim, Vai Pathak, Marko Mrdjen

Pediatrics Faculty Publications

There is mounting evidence that microbes residing in the human intestine contribute to diverse alcohol-associated liver diseases (ALD) including the most deadly form known as alcohol-associated hepatitis (AH). However, mechanisms by which gut microbes synergize with excessive alcohol intake to promote liver injury are poorly understood. Furthermore, whether drugs that selectively target gut microbial metabolism can improve ALD has never been tested. We used liquid chromatography tandem mass spectrometry to quantify the levels of microbe and host choline co-metabolites in healthy controls and AH patients, finding elevated levels of the microbial metabolite trimethylamine (TMA) in AH. In subsequent studies, we …


Therapeutic Treatment With The Anti-Inflammatory Drug Candidate Mw151 May Partially Reduce Memory Impairment And Normalizes Hippocampal Metabolic Markers In A Mouse Model Of Comorbid Amyloid And Vascular Pathology, David J. Braun, David K. Powell, Christopher J. Mclouth, Saktimayee M. Roy, D. Martin Watterson, Linda J. Van Eldik Jan 2022

Therapeutic Treatment With The Anti-Inflammatory Drug Candidate Mw151 May Partially Reduce Memory Impairment And Normalizes Hippocampal Metabolic Markers In A Mouse Model Of Comorbid Amyloid And Vascular Pathology, David J. Braun, David K. Powell, Christopher J. Mclouth, Saktimayee M. Roy, D. Martin Watterson, Linda J. Van Eldik

Neuroscience Faculty Publications

Alzheimer's disease (AD) is the leading cause of dementia in the elderly, but therapeutic options are lacking. Despite long being able to effectively treat the ill-effects of pathology present in various rodent models of AD, translation of these strategies to the clinic has so far been disappointing. One potential contributor to this situation is the fact that the vast majority of AD patients have other dementia-contributing comorbid pathologies, the most common of which are vascular in nature. This situation is modeled relatively infrequently in basic AD research, and almost never in preclinical studies. As part of our efforts to develop …