Open Access. Powered by Scholars. Published by Universities.®

Medical Specialties Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medical Specialties

System Measurements For X-Ray Phase And Diffraction Imaging, Erik Wolfgang Tripi Jan 2022

System Measurements For X-Ray Phase And Diffraction Imaging, Erik Wolfgang Tripi

Legacy Theses & Dissertations (2009 - 2024)

In medical imaging, X rays are used to look inside the body to find fractures in bones, abnormal masses, cavities in teeth, and so on. What makes X rays so good at looking at these types of structures is the X ray’s penetration power. When imaging soft tissue to search for tumors, X-ray images tend to have difficulty performing well. The reason for this is that the background structures, such as fat or fibro glandular tissue have similar absorption coefficients as the tumor. Mammography tends to have a high false positive rate and can miss tumors entirely as well. There …


Characterization Of Low Density Intracranial Lesions Using Dual-Energy Computed Tomography, Jessica L. Nute May 2015

Characterization Of Low Density Intracranial Lesions Using Dual-Energy Computed Tomography, Jessica L. Nute

Dissertations & Theses (Open Access)

Calcific and hemorrhagic foci of susceptibility are frequently encountered on routine brain MR studies. Both etiologies cause variations in local magnetic field strength, leading to dark regions on the MR images that cannot be classified. Single-energy CT (SECT) can be used to identify lesions with attenuation over 100 HU as calcific, however lesions with lower attenuation cannot be reliably identified. While calcific lesions are unlikely to cause harm, hemorrhagic lesions carry a risk of subsequent intracranial bleeding; as such, identification of hemorrhage is vital in preventing the inappropriate use of anticoagulant medications in patients with hemorrhagic lesions.

Given there currently …