Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Musculoskeletal, Neural, and Ocular Physiology

Integrated Inflammatory Signaling Landscape Response After Delivering Elovanoid Free-Fatty-Acid Precursors Leading To Experimental Stroke Neuroprotection, Madigan M. Reid, Ludmila Belayev, Larissa Khoutorova, Pranab K. Mukherjee, Andre Obenaus, Kierany Shelvin, Stacey Knowles, Sung Ha Hong, Nicolas G. Bazan Sep 2023

Integrated Inflammatory Signaling Landscape Response After Delivering Elovanoid Free-Fatty-Acid Precursors Leading To Experimental Stroke Neuroprotection, Madigan M. Reid, Ludmila Belayev, Larissa Khoutorova, Pranab K. Mukherjee, Andre Obenaus, Kierany Shelvin, Stacey Knowles, Sung Ha Hong, Nicolas G. Bazan

School of Graduate Studies Faculty Publications

Despite efforts to identify modulatory neuroprotective mechanisms of damaging ischemic stroke cascade signaling, a void remains on an effective potential therapeutic. The present study defines neuroprotection by very long-chain polyunsaturated fatty acid (VLC-PUFA) Elovanoid (ELV) precursors C-32:6 and C-34:6 delivered intranasally following experimental ischemic stroke. We demonstrate that these precursors improved neurological deficit, decreased T2WI lesion volume, and increased SMI-71 positive blood vessels and NeuN positive neurons, indicating blood–brain barrier (BBB) protection and neurogenesis modulated by the free fatty acids (FFAs) C-32:6 and C-34:6. Gene expression revealed increased anti-inflammatory and pro-homeostatic genes and decreases in expression of pro-inflammatory genes in …


Regeneration Of Neurons In Human Brain Tissue; A Revolutionary Concept With Therapeutic Potential, Mackenzie R. Dunn Apr 2023

Regeneration Of Neurons In Human Brain Tissue; A Revolutionary Concept With Therapeutic Potential, Mackenzie R. Dunn

Other Undergraduate Research

There is current research to suggest that endogenous neuronal regeneration, exogenous neuronal stem cell transplantation and glial cell reprogramming could be prospective therapeutic treatments for neurodegeneration and traumatic injury. With these conditions, there is significant brain atrophy, loss of neurons and loss of synaptic connections which can have devastating effects on executive functioning, cognition, learning and memory. This review will examine these modern approaches to adult neurogenesis, and assess the viable mechanisms and future outlook of these three therapies for neurological regenerative medicine.