Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Musculoskeletal, Neural, and Ocular Physiology

The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan May 2021

The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan

Honors Scholar Theses

The granule cells are the most abundant neuronal type in the human brain. Rapid proliferation of granule cell progenitors results in dramatic expansion and folding of the cerebellar cortex during postnatal development. Mis-regulation of this proliferation process causes medulloblastoma, the most prevalent childhood brain tumor. In the developing cerebellum, granule cells are derived from Atoh1-expressing cells, which arise from the upper rhombic lip (the interface between the roof plate and neuroepithelium). In addition to granule cells, the Atoh1 lineage also gives rise to different types of neurons including cerebellar nuclei neurons. In the current study, I have investigated the …


Osteoblast-Derived Fgf9 Regulates Skeletal Homeostasis, Liping Wang, Theresa M. Roth, Marcia J. Abbott, Linh Ho, Lalita Wattanachanya, Robert A. Nissenson Feb 2017

Osteoblast-Derived Fgf9 Regulates Skeletal Homeostasis, Liping Wang, Theresa M. Roth, Marcia J. Abbott, Linh Ho, Lalita Wattanachanya, Robert A. Nissenson

Health Sciences and Kinesiology Faculty Articles

FGF9 has complex and important roles in skeletal development and repair. We have previously observed that Fgf9 expression in osteoblasts (OBs) is regulated by G protein signaling and therefore the present study was done to determine whether OB-derived FGF9 was important in skeletal homeostasis. To directly test this idea, we deleted functional expression of Fgf9 gene in OBs using a 2.3 kb collagen type I promoter-driven Cre transgenic mouse line (Fgf9OB −/−). Both Fgf9 knockout (Fgf9OB −/−) and the Fgf9 floxed littermates (Fgf9fl/fl) mice were fully backcrossed and maintained in an FBV/N background. Three …


Il-15 Mediates Mitochondrial Activity Through A Ppar𝛿-Dependent-Ppar𝛼-Independent Mechanism In Skeletal Muscle Cells, Shantaé M. Thornton, James E. Krolopp, Marcia J. Abbott Jan 2016

Il-15 Mediates Mitochondrial Activity Through A Ppar𝛿-Dependent-Ppar𝛼-Independent Mechanism In Skeletal Muscle Cells, Shantaé M. Thornton, James E. Krolopp, Marcia J. Abbott

Health Sciences and Kinesiology Faculty Articles

Molecular mediators of metabolic processes, to increase energy expenditure, have become a focus for therapies of obesity. The discovery of cytokines secreted from the skeletal muscle (SKM), termed “myokines,” has garnered attention due to their positive effects on metabolic processes. Interleukin-15 (IL-15) is a myokine that has numerous positive metabolic effects and is linked to the PPAR family of mitochondrial regulators. Here, we aimed to determine the importance of PPAR𝛼 and/or PPAR𝛿 as targets of IL-15 signaling. C2C12 SKM cells were differentiated for 6 days and treated every other day with IL-15 (100 ng/mL), a PPAR𝛼 inhibitor (GW-6471), a PPAR𝛿 …


Effects Of Estrogen On Muscle Damage In Response To An Acute Resistance Exercise Protocol, Megan R. Wolf May 2009

Effects Of Estrogen On Muscle Damage In Response To An Acute Resistance Exercise Protocol, Megan R. Wolf

Honors Scholar Theses

Creatine Kinase (CK) is used as a measure of exercise-induced muscle membrane damage. During acute eccentric (muscle lengthening) exercise, muscle sarcolemma, sarcoplasmic reticulum, and Z-lines are damaged, thus causing muscle proteins and enzymes to leak into the interstitial fluid.

Strenuous eccentric exercise produces an elevation of oxygen free radicals, which further increases muscle damage. Muscle soreness and fatigue can be attributed to this membrane damage. Estradiol, however, may preserve membrane stability post-exercise (Brancaccio, Maffulli, & Limongelli, 2007; Carter, Dobridge, & Hackney, 2001; Tiidus, 2001). Because estradiol has a similar structure to Vitamin E, which is known to have antioxidant properties, …