Open Access. Powered by Scholars. Published by Universities.®

Medical Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Medical Physiology

Signaling Induced By Inflammatory Mediators In The Rodent Pulmonary Microvasculature, Rachel Escue Helms Dec 2018

Signaling Induced By Inflammatory Mediators In The Rodent Pulmonary Microvasculature, Rachel Escue Helms

Theses and Dissertations (ETD)

Acute lung inflammation (ALI), stemming from a disproportionate and detrimental immune response, may arise from or complicate other disease states, leading to the often-fatal acute respiratory distress syndrome (ARDS). Because of the many culpable factors and differing points of induction, pinning down the signaling mechanisms involved in the morbidity of this disorder as well as defining an effective treatment has proved problematic. However, the most detrimental characteristic of this condition is seen regardless of the development of the response: increased microvascular permeability. Because of the architecture and the size of the pulmonary microvascular network, the lungs have a resident, sequestered …


Myocyte [Na+]I Dysregulation In Heart Failure And Diabetic Cardiomyopathy, Sanda Despa Sep 2018

Myocyte [Na+]I Dysregulation In Heart Failure And Diabetic Cardiomyopathy, Sanda Despa

Pharmacology and Nutritional Sciences Faculty Publications

By controlling the function of various sarcolemmal and mitochondrial ion transporters, intracellular Na+ concentration ([Na+]i) regulates Ca2+ cycling, electrical activity, the matching of energy supply and demand, and oxidative stress in cardiac myocytes. Thus, maintenance of myocyte Na+ homeostasis is vital for preserving the electrical and contractile activity of the heart. [Na+]i is set by the balance between the passive Na+ entry through numerous pathways and the pumping of Na+ out of the cell by the Na+/K+-ATPase. This equilibrium is perturbed in heart failure, …


Gender- And Region-Specific Changes In Estrogen Signaling In Aging Rat Brain Mitochondria, Christopher M. Evola, Tanner L. Hudson, Luping Huang, Adrian M. Corbett, Debra A. Mayes Aug 2018

Gender- And Region-Specific Changes In Estrogen Signaling In Aging Rat Brain Mitochondria, Christopher M. Evola, Tanner L. Hudson, Luping Huang, Adrian M. Corbett, Debra A. Mayes

Neuroscience, Cell Biology & Physiology Faculty Publications

Recently epidemiological studies suggest females lose neuroprotection from neurodegenerative diseases as they go through menopause. It has been hypothesized that this neuroprotection is hormone‐dependent. The current study characterized cell signaling molecules downstream of estrogen receptor beta that are known to play a role in memory, PKC, ERK, and connexin‐43, in regions of the brain associated with memory decline in an attempt to elucidate significant changes that occur post‐estrus. Total whole cell lysates were compared to isolated mitochondrial protein because mitochondrial function is known to be altered during aging. As hypothesized, protein concentrations differed depending on age, gender, and brain region. …


Protein Trafficking Of Bk Channel Β1 Subunits In Cerebral Artery Myocytes, Xue Zhai May 2018

Protein Trafficking Of Bk Channel Β1 Subunits In Cerebral Artery Myocytes, Xue Zhai

Theses and Dissertations (ETD)

Rationale: Large-conductance calcium (Ca2+)-activated potassium channels (BK) are expressed in arterial myocytes to control arterial contractility. It is composed of pore- forming BKα and auxiliary β1 subunits. Auxiliary β1 subunits associate with BKα which modulate Ca2+ sensitivity of BK channel. Previous data showed that BKα locates at cell membrane, whereas β1 subunits are primarily intracellular which regulated by Rab11A- positive recycling endosomes. Endothelin-1 (ET-1), a vasoconstrictor, induces contraction of myocytes. ET-1 inhibits BK channel but mechanisms are not fully understood. It is unclear that vasoconstrictors regulate the cellular distribution of BK channels. Furthermore, BK channels are involved …


Characterization Of The Hepatotoxicity Of Rifampicin And Isoniazid, Christopher T. Brewer May 2018

Characterization Of The Hepatotoxicity Of Rifampicin And Isoniazid, Christopher T. Brewer

Theses and Dissertations (ETD)

In a mouse model, rifampicin and isoniazid combination treatment results in cholestatic liver injury that is associated with an increase of protoporphyrin ix (PPIX), the penultimate heme precursor. Excess PPIX is believed to bind to bile acids, precipitate in bile canaliculi, and form bile plugs leading to cholestasis fol owed by liver injury. Both ferrochelatase (FECH/Fech) and aminolevulinic acid synthase 1 (ALAS1/Alas1) are crucial enzymes in regulating heme biosynthesis. Isoniazid has recently been reported to up-regulate Alas1 but down-regulate Fech protein levels in mice; however the mechanism of isoniazid mediated heme synthesis …


Spinal Cord Trauma: An Overview Of Normal Structure And Function, Primary And Secondary Mechanisms Of Injury, And Emerging Treatment Modalities, Daniel Morin May 2018

Spinal Cord Trauma: An Overview Of Normal Structure And Function, Primary And Secondary Mechanisms Of Injury, And Emerging Treatment Modalities, Daniel Morin

Senior Honors Theses

The structures of the spinal cord and vertebral column are designed to provide flexibility, while still providing ample protection for the spinal cord deep within. While it does offer remarkable protection against most routine trauma, the spinal cord is still vulnerable to high-force etiologies of trauma and may become damaged as a result. These events are referred to as primary injury. Following the initial injury, the body’s own physiological responses cause a cascade of deleterious effects, known as secondary injury. Secondary injury is a major therapeutic target in mitigating the effects of spinal cord injury (SCI), and much research is …


Muscle Nicotinic Acetylcholine Receptors May Mediate Trans-Synaptic Signaling At The Mouse Neuromuscular Junction, Xueyong Wang, J. Michael Mcintosh, Mark M. Rich Feb 2018

Muscle Nicotinic Acetylcholine Receptors May Mediate Trans-Synaptic Signaling At The Mouse Neuromuscular Junction, Xueyong Wang, J. Michael Mcintosh, Mark M. Rich

Neuroscience, Cell Biology & Physiology Faculty Publications

Block of neurotransmitter receptors at the neuromuscular junction (NMJ) has been shown to trigger upregulation of the number of synaptic vesicles released (quantal content, QC), a response termed homeostatic synaptic plasticity. The mechanism underlying this plasticity is not known. Here, we used selective toxins to demonstrate that block of α1-containing nicotinic acetylcholine receptors (nAChRs) at the NMJ of male and female mice triggers the upregulation of QC. Reduction of current flow through nAChRs, induced by drugs with antagonist activity, demonstrated that reduction in synaptic current per se does not trigger upregulation of QC. These data led to the remarkable conclusion …


Trpm7 Current Inactivation: Evidence For Inside-Out Signaling, Tetyana Zhelay, J. Ashot Kozak Feb 2018

Trpm7 Current Inactivation: Evidence For Inside-Out Signaling, Tetyana Zhelay, J. Ashot Kozak

Neuroscience, Cell Biology & Physiology Faculty Publications

TRPM7 channels conduct metal cations such as Na+, K+, Ca2+ and Mg2+. In the presence of external Ca2+/Mg2+ TRPM7 has a steeply outwardly rectifying current-voltage (I-V) relation. In the absence of Ca2+/Mg2+ the IV becomes semi-linear. This has been explained by the removal of pore blockade by divalent cations (e.g. Ca2+o/Mg2+o). TRPM7 channels are inhibited by cytoplasmic Mg2+ in a voltage-independent manner, primarily by a reversible reduction in the overall number of conducting channels. Here, we have examined the consequences of external Ca2+ removal and reintroduction on TRPM7 current kinetics. In whole-cell patch clamp with low internal Mg2+, we rapidly …